Remote Sensing Technology and Application, Volume. 40, Issue 1, 202(2025)

Estimation of Canopy Height is Conducted by Integrating Multi-source Remote Sensing Data from ICESat-2 and GEDI

Huajun LIANG, Qiang BIE*, Ying SHI, Xinru DENG, and Xinzhang LI
Author Affiliations
  • Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou730070,China
  • show less
    Figures & Tables(13)
    Overview of the study area
    Comparison of Multi-Model Fusion of ICESat-2 and GEDI Data
    Flowchart of the Particle Swarm Optimization (PSO)algorithm
    Overall workflow(a) Feature extraction and point-scale height dataset acquisition,(b) Canopy height inversion retrieval
    Scatter plot of predictions from different models
    Random forest feature importance analysis
    Mapping of canopy height in Qilian Mountain National Park
    Validation of forest height accuracy among different retrieval models based on GEDI data
    Comparison of predicted results with field data
    • Table 1. ICESat-2 photon feature parameter

      View table
      View in Article

      Table 1. ICESat-2 photon feature parameter

      ICESat-2光子特征参数文件路径描述
      RH98-RH25*/gtxx/canopy/canopy_h_metrics每分段冠层高度百分位数包括25,50,60,70,75,80,85,90,95,98
      RHmax*/gtxx/canopy/h_max_canopy每分段冠层高度最大值
      Hmedian*/gtxx/canopy/h_median_canopy每分段冠层高度中位数
      Coverage*/gtxx/canopy/segment_cover冠层覆盖百分比
      Slope*/gtxx/terrain/terrain_slope每分段地形坡度
    • Table 2. Image feature parameter set

      View table
      View in Article

      Table 2. Image feature parameter set

      影像特征参数名称参数描述
      植被指数特征EVI2.5*(B8-B4)/(B8+6*B4-7.5*B2+1)提高植被覆盖估计的稳定性
      SAVI(B8-B4)/(B8+B4+L)*(1+L)土壤亮度影响植被指数(本文L取0.5)
      GI(B3-B2)/(B3+B2)衡量植被绿度反映植被覆盖情况
      VSWI(B8-B11)/(B8+B11)估计植被水分含量
      CRIB4+(2*(B5-B4)*(B3-B4))估计植被叶绿素含量
      BRIB4/B5估计植被叶绿素浓度反映植被生长状况
      CI_greenB4/B3反映植被光谱 特性和生长状况
      纹理特征CON(对比度)n=0k=1n2i-j=1Pi,j估计植被叶绿素浓度反映植被生长状况
      ENT(熵)-i=1kj=1kP(i,j)log [(Pi,j)]描述纹理的非均匀程度或复杂度的特征
      VAR(协方差)i=1kj=1k[Pi,j-μn+n]2表示灰度的变化大小的特征
      DIS(相异性)i=1kj=1ki-jPi,j描述图像灰度的相似性的特性
      CON(对比度)n=0k-1n2i-j=1Pi,j描述某像素值及其邻域像素值亮度的对比情况
    • Table 3. The accuracy evaluation results of different models in the table

      View table
      View in Article

      Table 3. The accuracy evaluation results of different models in the table

      算法模型训练集测试集
      R2RMSE/mMAE/mR2RMSE/mMAE/m
      SLR0.533.973.210.563.973.22
      LightGBM0.703.262.430.563.963.16
      RF0.733.082.450.643.492.85
      RF-SLR0.742.912.240.693.352.60
      PSO-RF0.782.792.210.713.152.63
    • Table 4. Evaluation of accuracy among different forest height dataset models

      View table
      View in Article

      Table 4. Evaluation of accuracy among different forest height dataset models

      冠层高度集训练集测试集
      R2RMSE/mMAE/mR2RMSE/mMAE/m
      ICESat-20.842.982.260.416.114.19
      GEDI0.623.773.020.384.763.75
      RF-SLR0.862.071.660.553.772.99
      PSO-RF0.861.611.290.563.022.38
    Tools

    Get Citation

    Copy Citation Text

    Huajun LIANG, Qiang BIE, Ying SHI, Xinru DENG, Xinzhang LI. Estimation of Canopy Height is Conducted by Integrating Multi-source Remote Sensing Data from ICESat-2 and GEDI[J]. Remote Sensing Technology and Application, 2025, 40(1): 202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 26, 2024

    Accepted: --

    Published Online: May. 22, 2025

    The Author Email: Qiang BIE (bieq@lzjtu.edu.cn)

    DOI:10.11873/j.issn.1004-0323.2025.1.0202

    Topics