Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1000004(2024)

A Review on High-Speed Wavefront Shaping System

Jiawei Luo1, Daixuan Wu2, Jiajun Liang1, and Yuecheng Shen3、*
Author Affiliations
  • 1School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, Guangdong , China
  • 2School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, Guangdong , China
  • 3State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • show less
    References(86)

    [1] Ruan H W, Brake J, Robinson J E et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 3, eaao5520(2017).

    [2] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).

    [3] Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 4, 388-394(2010).

    [4] Jones P, Maragó O, Volpe G[M]. Optical tweezers: principles and applications(2015).

    [5] Liu Y, Shen Y C, Ruan H W et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses[J]. Journal of Biomedical Optics, 23, 010501(2018).

    [6] Wang F J, He H X, Zhuang H C et al. Controlled light field concentration through turbid biological membrane for phototherapy[J]. Biomedical Optics Express, 6, 2237-2245(2015).

    [7] van Putten E G, Akbulut D, Bertolotti J et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 106, 193905(2011).

    [8] Wang L V, Wu H I[M]. Biomedical optics: principles and imaging(2012).

    [9] Ntziachristos V, Ripoll J, Wang L V et al. Looking and listening to light: the evolution of whole-body photonic imaging[J]. Nature Biotechnology, 23, 313-320(2005).

    [10] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [11] Wang D F, Zhou E H, Brake J et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2, 728-735(2015).

    [12] Tzang O, Niv E, Singh S et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform[J]. Nature Photonics, 13, 788-793(2019).

    [13] Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).

    [14] Oron D, Tal E, Silberberg Y. Scanningless depth-resolved microscopy[J]. Optics Express, 13, 1468-1476(2005).

    [15] Zhang R S, Du J Y, He Y et al. Characterization of the spectral memory effect of scattering media[J]. Optics Express, 29, 26944-26954(2021).

    [16] Liu Y, Lai P X, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).

    [17] Zhu G H, van Howe J, Durst M et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 13, 2153-2159(2005).

    [18] Papagiakoumou E, Anselmi F, Bègue A et al. Scanless two-photon excitation of channelrhodopsin-2[J]. Nature Methods, 7, 848-854(2010).

    [19] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).

    [20] Yu Z P, Li H H, Zhong T T et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields[J]. The Innovation, 3, 100292(2022).

    [21] Park J H, Yu Z P, Lee K et al. Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications[J]. APL Photonics, 3, 100901(2018).

    [22] Qiao Y, Chen X F, Peng Y J et al. Second-harmonic focusing by nonlinear turbid medium via feedback-based wavefront shaping[J]. Optics Letters, 42, 1895-1898(2017).

    [23] Wan L P, Chen Z Y, Huang H L et al. Focusing light into desired patterns through turbid media by feedback-based wavefront shaping[J]. Applied Physics B, 122, 204(2016).

    [24] Aulbach J, Gjonaj B, Johnson P et al. Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback[J]. Optics Express, 20, 29237-29251(2012).

    [25] Luo J W, Liang J J, Wu D X et al. Simultaneous dual-channel data transmission through a multimode fiber via wavefront shaping[J]. Applied Physics Letters, 123, 151106(2023).

    [26] Luo J W, Wu Z H, Wu D X et al. Efficient glare suppression with Hadamard-encoding-algorithm-based wavefront shaping[J]. Optics Letters, 44, 4067-4070(2019).

    [27] Wu D X, Luo J W, Li Z H et al. A thorough study on genetic algorithms in feedback-based wavefront shaping[J]. Journal of Innovative Optical Health Sciences, 12, 1942004(2019).

    [28] Tian B X, Han J, Liu B C. Research on non-invasive deep focusing in random scattering medium[J]. Laser & Optoelectronics Progress, 59, 1029001(2022).

    [29] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [30] Drémeau A, Liutkus A, Martina D et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques[J]. Optics Express, 23, 11898-11911(2015).

    [31] N’Gom M, Lien M B, Estakhri N M et al. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method[J]. Scientific Reports, 7, 2518(2017).

    [32] N'Gom M, Norris T B, Michielssen E et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system[J]. Optics Letters, 43, 419-422(2018).

    [33] Deng L, Yan J D, Elson D S et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system[J]. Optics Express, 26, 18436-18447(2018).

    [34] Zhao T R, Deng L, Wang W et al. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber[J]. Optics Express, 26, 20368-20378(2018).

    [35] Huang G Q, Wu D X, Luo J W et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter[J]. Optics Express, 28, 9487-9500(2020).

    [36] Huang G Q, Wu D X, Luo J W et al. Generalizing the Gerchberg-Saxton algorithm for retrieving complex optical transmission matrices[J]. Photonics Research, 9, 34-42(2020).

    [37] Wang Z Y, Wu D X, Huang G Q et al. Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system[J]. Optics Letters, 46, 5542-5545(2021).

    [38] Ancora D, Dominici L, Gianfrate A et al. Speckle spatial correlations aiding optical transmission matrix retrieval: the smoothed Gerchberg-Saxton single-iteration algorithm[J]. Photonics Research, 10, 2349-2358(2022).

    [39] Popoff S M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).

    [40] Choi Y, Yang T D, Fang-Yen C et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Physical Review Letters, 107, 023902(2011).

    [41] Kim M, Choi W, Choi Y et al. Transmission matrix of a scattering medium and its applications in biophotonics[J]. Optics Express, 23, 12648-12668(2015).

    [42] Chaigne T, Katz O, Boccara A C et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).

    [43] Yoon J, Lee K, Park J et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 23, 10158-10167(2015).

    [44] Wu D X, Wang Z Y, Wang J et al. Probabilistic phase shaping guided wavefront control of complex media with information-limited intensity measurements[J]. Laser & Photonics Reviews, 17, 2300110(2023).

    [45] Wu D X, Luo J W, Lu Z B et al. Two-stage matrix-assisted glare suppression at a large scale[J]. Photonics Research, 10, 2693-2701(2022).

    [46] He Y, Wu D X, Zhang R S et al. Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices[J]. Optics Express, 29, 20353-20369(2021).

    [47] Wu D X, Qin L X, Luo J W et al. Delivering targeted color light through a multimode fiber by field synthesis[J]. Optics Express, 28, 19700-19710(2020).

    [48] Ni F C, Liu H G, Zheng Y L et al. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method[J]. Advanced Photonics, 5, 046010(2023).

    [49] Tu S J, Lei Q N, Cai Y J et al. Generation of Lommel beams through highly scattering media[J]. Chinese Optics Letters, 20, 092501(2022).

    [50] Liang H P, Li T J, Luo J W et al. Optical focusing inside scattering media with iterative time-reversed ultrasonically encoded near-infrared light[J]. Optics Express, 31, 18365-18378(2023).

    [51] Shen L C, Liang H P, Zhao J Y et al. Wavefront shaping technology based on digital optical phase conjugation (invited)[J]. Infrared and Laser Engineering, 51, 20220256(2022).

    [52] Wang J, Liang H P, Luo J W et al. Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode[J]. Optics Express, 29, 30961-30977(2021).

    [53] Yang J M, Shen Y C, Liu Y et al. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation[J]. Applied Physics Letters, 111, 201108(2017).

    [54] Shen Y C, Liu Y, Ma C et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 21, 085001(2016).

    [55] Shen Y C, Liu Y, Ma C et al. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media[J]. Optica, 4, 97-102(2017).

    [56] Liu Y, Ma C, Shen Y C et al. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media[J]. Optics Letters, 41, 1321-1324(2016).

    [57] Shen Y C, Liu Y, Ma C et al. Focusing light through scattering media by full-polarization digital optical phase conjugation[J]. Optics Letters, 41, 1130-1133(2016).

    [58] He G S. Optical phase conjugation: principles, techniques, and applications[J]. Progress in Quantum Electronics, 26, 131-191(2002).

    [59] Shang Q H. Optical phase conjugation and four-wave mixing[J]. Optics & Optoelectronic Technology, 1, 9-11(2003).

    [60] Ruan H W, Haber T, Liu Y et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 4, 1337-1343(2017).

    [61] Yu Z P, Huangfu J T, Zhao F Y et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 8, 2927(2018).

    [62] Ruan H W, Jang M, Yang C H. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light[J]. Nature Communications, 6, 8968(2015).

    [63] Yang J M, Li L, Shemetov A A et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star[J]. Science Advances, 5, eaay1211(2019).

    [64] Hsieh C L, Pu Y, Grange R et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 18, 20723-20731(2010).

    [65] Hsieh C L, Pu Y, Grange R et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 18, 12283-12290(2010).

    [66] Xu X, Liu H L, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).

    [67] Liu Y, Ma C, Shen Y C et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 4, 280-288(2017).

    [68] Luo J W, Liu Y, Wu D X et al. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering[J]. Science Advances, 8, eadd9158(2022).

    [69] Stockbridge C, Lu Y, Moore J et al. Focusing through dynamic scattering media[J]. Optics Express, 20, 15086-15092(2012).

    [70] Blochet B, Bourdieu L, Gigan S. Focusing light through dynamical samples using fast continuous wavefront optimization[J]. Optics Letters, 42, 4994-4997(2017).

    [71] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 20, 1733-1740(2012).

    [72] Goorden S A, Bertolotti J, Mosk A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device[J]. Optics Express, 22, 17999-18009(2014).

    [73] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).

    [74] Conkey D B, Brown A N, Caravaca-Aguirre A M et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).

    [75] Huang H L, Chen Z Y, Sun C Z et al. Light focusing through scattering media by particle swarm optimization[J]. Chinese Physics Letters, 32, 104202(2015).

    [76] Fang L J, Zuo H Y, Yang Z G et al. Particle swarm optimization to focus coherent light through disordered media[J]. Applied Physics B, 124, 155(2018).

    [77] Fang L J, Zhang X C, Zuo H Y et al. Focusing light through random scattering media by four-element division algorithm[J]. Optics Communications, 407, 301-310(2018).

    [78] Wu Y L, Zhang X D, Yan H M. Focusing light through scattering media using the harmony search algorithm for phase optimization of wavefront shaping[J]. Optik, 158, 558-564(2018).

    [79] Wu Z H, Luo J W, Feng Y H et al. Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm[J]. Optics Express, 27, 5570-5580(2019).

    [80] Hemphill A S, Shen Y C, Liu Y et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping[J]. Applied Physics Letters, 111, 221109(2017).

    [81] Luo J W, Wu D X, Liu Y et al. Single-exposure ultrasound-modulated optical tomography with a quaternary phase encoded mask[J]. Optics Letters, 48, 2857-2860(2023).

    [82] Hemphill A S, Tay J W, Wang L V. Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media[J]. Journal of Biomedical Optics, 21, 121502(2016).

    [83] Caravaca-Aguirre A M, Niv E, Conkey D B et al. Real-time resilient focusing through a bending multimode fiber[J]. Optics Express, 21, 12881-12887(2013).

    [84] Wei X M, Shen Y C, Jing J C et al. Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb[J]. Science Advances, 6, eaay1192(2020).

    [85] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [86] Xiao Y Q, Shi Y, Li B J et al. Cell manipulation and neuron regulation based on tapered optical fiber tweezers[J]. Chinese Journal of Lasers, 50, 1507302(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jiawei Luo, Daixuan Wu, Jiajun Liang, Yuecheng Shen. A Review on High-Speed Wavefront Shaping System[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1000004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 6, 2023

    Accepted: Nov. 27, 2023

    Published Online: Apr. 29, 2024

    The Author Email: Yuecheng Shen (ycshen@lps.ecnu.edu.cn)

    DOI:10.3788/LOP232446

    CSTR:32186.14.LOP232446

    Topics