Chinese Journal of Lasers, Volume. 47, Issue 3, 301001(2020)

Coupled Wave Theory of Extra-Cavity Pumped Anti-Stokes Lasers

Wang Cong1、* and Lü Dongxiang2
Author Affiliations
  • 1School of Science, Tianjin University of Technology, Tianjin 300384, China
  • 2Tianjin Institute of Power Sources, Tianjin 300384, China
  • show less
    References(24)

    [1] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704(2007).

    [2] Jiang P B, Ding X, Li B et al. 9.80-W and 0.54-mJ actively Q-switched Nd∶YAG/Nd∶YVO4 hybrid gain intracavity Raman laser at 1176 nm[J]. Optics Express, 25, 3387-3393(2017).

    [4] Jiang W, Li Z, Zhu S Q et al. YVO4 Raman laser pumped by a passively Q-switched Yb∶YAG laser[J]. Optics Express, 25, 14033-14042(2017).

    [5] Ding S H, Zhang X Y, Wang Q P et al. Numerical optimization of the extracavity Raman laser with barium nitrate crystal[J]. Optics Communications, 267, 480-486(2006).

    [6] Smetanin S N, Doroshenko M E, Ivleva L I et al. Low-threshold parametric Raman generation of high-order Raman components in crystals[J]. Applied Physics B, 117, 225-234(2014).

    [7] Carman R L, Shimizu F, Wang C S et al. Theory of Stokes pulse shapes in transient stimulated Raman scattering[J]. Physical Review A, 2, 60-72(1970).

    [9] Yang K W, Ye P B, Zheng S K et al. Polarization switch of four-wave mixing in a tunable fiber optical parametric oscillator[J]. Optics Express, 26, 2995-3003(2018).

    [11] Wang C, Cong Z H, Qin Z G et al. LD-side-pumped Nd∶YAG/BaWO4 intracavity Raman laser for anti-Stokes generation[J]. Optics Communications, 322, 44-47(2014).

    [12] Grasiuk A Z, Kurbasov S V, Losev L L. Picosecond parametric Raman laser based on KGd(WO4)2 crystal[J]. Optics Communications, 240, 239-244(2004).

    [13] Wei W, Zhang X Y, Wang Q P et al. Theoretical and experimental study on intracavity pumped SrWO4 anti-Stokes Raman laser[J]. Applied Physics B, 116, 561-568(2014).

    [16] Mildren R P, Coutts D W, Spence D J. All-solid-state parametric Raman anti-Stokes laser at 508 nm[J]. Optics Express, 17, 810-818(2009).

    [17] Smetanin S N, Jelínek M, Kubecek V. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching[J]. Applied Physics B, 123, 203(2017).

    [18] Vermeulen N, Debaes C, Fotiadi A A et al. Stokes-anti-Stokes iterative resonator method for modeling Raman lasers[J]. IEEE Journal of Quantum Electronics, 42, 1144-1156(2006).

    [19] Smetanin S N, Jelínek M, Tereshchenko D P et al. Extracavity pumped parametric Raman nanosecond crystalline anti-Stokes laser at 954 nm with collinear orthogonally polarized beam interaction at tangential phase matching[J]. Optics Express, 26, 22637-22649(2018).

    [20] Shen Y R, Bloembergen N. Theory of stimulated Brillouin and Raman scattering[J]. Physical Review, 137, A1787-A1805(1965).

    [21] Makarov N S, Bespalov V G. Effective method of anti-Stokes generation by quasi-phase-matched stimulated Raman scattering[J]. Journal of the Optical Society of America B, 22, 835-843(2005).

    [22] Wang C S. Theory of stimulated Raman scattering[J]. Physical Review, 182, 482-494(1969).

    [23] Maier M, Kaiser W, Giordmaine J A. Backward stimulated Raman scattering[J]. Physical Review, 177, 580-599(1969).

    Tools

    Get Citation

    Copy Citation Text

    Wang Cong, Lü Dongxiang. Coupled Wave Theory of Extra-Cavity Pumped Anti-Stokes Lasers[J]. Chinese Journal of Lasers, 2020, 47(3): 301001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Aug. 20, 2019

    Accepted: --

    Published Online: Mar. 12, 2020

    The Author Email: Cong Wang (wangc.sd@163.com)

    DOI:10.3788/CJL202047.0301001

    Topics