Optics and Precision Engineering, Volume. 31, Issue 21, 3203(2023)
Multi-scale semantic OD/OC segmentation method based on attention perception
[1] [1] 于洋, 蒋沁, 曹国凡. 高度近视合并青光眼的临床诊断研究进展[J]. 国际眼科杂志, 2021, 21(6): 1008-1011. doi: 10.3980/j.issn.1672-5123.2021.6.14YUY, JIANGQ, CAOG F. Progress in the clinical diagnosis of high myopia combined with glaucoma [J]. International Eye Science, 2021,21 (6): 1008-1011. (in Chinese). doi: 10.3980/j.issn.1672-5123.2021.6.14
[2] SIDDIQUEE M S, PATHAN N S. Optic disc segmentation using superpixel based features and random forest classifier[C], 1-5(2019).
[3] REHMAN Z U, NAQVI S S, KHAN T M et al. Multi-parametric optic disc segmentation using superpixel based feature classification[J]. Expert Systems With Applications, 120, 461-473(2019).
[4] SINGH R U, GUJRAL S. Assessment of disc damage likelihood scale (DDLS) for automated glaucoma diagnosis[J]. Procedia Computer Science, 36, 490-497(2014).
[5] YU T, MA Y, LI W. Automatic localization and segmentation of optic disc in fundus image using morphology and level set[C], 195-199(2015).
[6] FU H Z, CHENG J, XU Y W et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 37, 1597-1605(2018).
[7] LIU B Y, PAN D R, SONG H. Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network[J]. BMC Medical Imaging, 21, 1-12(2021).
[8] [8] 于舒扬, 袁鑫, 郑秀娟. 融合感受野模块的卷积神经网络视杯视盘联合分割[J]. 中国生物医学工程学报, 2022, 41(2):167-176. doi: 10.3969/j.issn.0258-8021.2022.02.005YUSH Y, YUANX, ZHENGX J. Joint optic cup and disc segmentation using convolutional neural network with receptive field module[J]. Chinese Journal of Biomedical Engineering, 2022, 41(2):167-176.(in Chinese). doi: 10.3969/j.issn.0258-8021.2022.02.005
[9] ZHAO H S, SHI J P, QI X J et al. Pyramid scene parsing network[C], 21, 6230-6239(2017).
[10] RONNEBERGER O, FISCHER P, BROX T.
[11] SEVASTOPOLSKY A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network[J]. Pattern Recognition and Image Analysis, 27, 618-624(2017).
[12] [12] 黄文博, 黄钰翔, 姚远, 等. 融合注意力的ConvNeXt视网膜病变自动分级[J]. 光学 精密工程, 2022, 30(17):2147-2154. doi: 10.37188/OPE.20223017.2147HUANGW B, HUANGY X, YAOY, et al. Automatic classification of retinopathy with attention ConvNeXt[J]. Optics and Precision Engineering, 2022, 30(17):2147-2154.(in Chinese). doi: 10.37188/OPE.20223017.2147
[13] CARMONA E J, RINCÓN M, GARCÍA-FEIJOÓ J et al. Identification of the optic nerve head with genetic algorithms[J]. Artificial Intelligence in Medicine, 43, 243-259(2008).
[14] FUMERO F, ALAYON S, SANCHEZ J L et al. RIM-ONE: an open retinal image database for optic nerve evaluation[C], 27, 1-6(2011).
[15] SIVASWAMY J, KRISHNADAS S R, DATT JOSHI G et al. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation[C], 53-56,(2014).
[16] MANINIS K K, PONT-TUSET J, ARBELÁEZ P et al. Deep Retinal Image Understanding[M]. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, 140-148(2016).
[18] ALOM M Z, YAKOPCIC C, TAHA T M et al. Nuclei segmentation with recurrent residual convolutional neural networks based U-net (R2U-net)[C], 23, 228-233(2018).
[19] WEN Y, CHEN L T, QIAO L F et al. An efficient weakly-supervised learning method for optic disc segmentation[C], 16, 835-842(2020).
[20] KIRILLOV A, MINTUN E. Segment anything[J]. arXiv e-prints.abs/2304(02643).
[22] MA B Q, YANG Q, CUI H et al. MEAL: meta enhanced entropy-driven adversarial learning for optic disc and cup segmentation[C], 3273-3276(5).
[23] WANG S J, YU L Q, YANG X et al. Patch-based output space adversarial learning for joint optic disc and cup segmentation[J]. IEEE Transactions on Medical Imaging, 38, 2485-2495(2019).
[24] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[25] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[26] HAIDER A, ARSALAN M, PARK C et al. Exploring deep feature-blending capabilities to assist glaucoma screening[J]. Applied Soft Computing, 133, 109918(2023).
[27] CIVIT-MASOT J. A study on the use of Edge TPUs for eye fundus image segmentation[J]. Engineering Applications of Artificial Intelligence, 104, 104384(2021).
[28] HAIDERA, ARSALANM, HAIDERA, ARSALANM. Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images[J]. Expert Systems With Applications, 207, 117968(2022).
[29] SUN J D, YAO C, LIU J et al. GNAS-U2Net: a new optic cup and optic disc segmentation architecture with genetic neural architecture search[J]. IEEE Signal Processing Letters, 29, 697-701(2022).
Get Citation
Copy Citation Text
Yan YANG, Yadi CAO, Wenbo HUANG. Multi-scale semantic OD/OC segmentation method based on attention perception[J]. Optics and Precision Engineering, 2023, 31(21): 3203
Category:
Received: May. 22, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: Yan YANG (yanyang2016@hotmail.com)