Laser Technology, Volume. 46, Issue 1, 69(2022)

Research progress on quantum dispersion cancellation

JIN Ruibo1,2, YANG Zixiang1, HAO Xiangying1, and LI Baihong3,4、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(49)

    [1] [1] FRANSON J D. Nonlocal cancellation of dispersion [J]. Physical Review, 1992, A45(5): 3126-3132.

    [2] [2] CHEN Zh, HAN Y J. Quantum nonlocality, quantum entanglement and new physics [J]. Chinese Science Bulletin, 2016, 61(10): 1072-1074.

    [3] [3] BAEK S Y, CHO Y W, KIM Y H. Nonlocal dispersion cancellation using entangled photons [J]. Optics Express, 2009, 17(21): 19241-19252.

    [4] [4] FRANSON J D. Nonclassical nature of dispersion cancellation and nonlocal interferometry [J]. Physical Review, 2009, A80(3): 032119.

    [5] [5] BRENDEL J, ZBINDEN H, GISIN N. Measurement of chromatic dispersion in optical fibers using pairs of correlated photons [J]. Optics Communications, 1998, 151(1/3): 35-39.

    [6] [6] JARAMILLO-VILLEGAS J A, IMANY P, ODELE O D, et al. Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb [J]. Optica, 2017, 4(6): 655-658.

    [7] [7] LI B H, HOU F Y, QUAN R A, et al. Nonlocality test of energy-time entanglement via nonlocal dispersion cancellation with nonlocal detection [J]. Physical Review, 2019, A100(5): 053803.

    [8] [8] O’DONNELL K A. Observations of dispersion cancellation of entangled photon pairs [J]. Physical Review Letters, 2011, 106(6): 063601.

    [9] [9] LUKENS J M, DEZFOOLIYAN A, LANGROCK C, et al. Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator [J]. Physical Review Letters, 2013, 111(19): 193603.

    [10] [10] PREVEDEL R, SCHREITER K M, LAVOIE J, et al. Classical a-nalog for dispersion cancellation of entangled photons with local detection [J]. Physical Review, 2011, A84(5): 051803.

    [11] [11] MAcLEAN J P W, DONOHUE J M, RESCH K J. Direct characte-rization of ultrafast energy-time entangled photon pairs [J]. Physical Review Letters, 2018, 120(5): 053601.

    [12] [12] KALTENBAEK R, LAVOIE J, BIGGERSTAFF D N, et al. Quantum-inspired interferometry with chirped laser pulses [J]. Nature Physics, 2008, 4(11): 864-868.

    [13] [13] KALTENBAEK R, LAVOIE J, RESCH K J. Classical analogues of two-photon quantum interference [J]. Physical Review Letters, 2009, 102(24): 243601.

    [14] [14] LAVOIE J, KALTENBAEK R, RESCH K J. Quantum-optical coherence tomography with classical light [J]. Optics Express, 2009, 17(5): 3818-3826.

    [15] [15] WASAK T, SZAN'KOWSKI P, WASILEWSKI W, et al. Entanglement-based signature of nonlocal dispersion cancellation [J]. Physical Review, 2010, A82(5): 052120.

    [16] [16] FRANSON J D. Bell inequality for position and time [J]. Physical Review Letters, 1989, 62(19): 2205-2208.

    [17] [17] FITCH M J, FRANSON J D. Dispersion cancellation and nonclassical noise reduction for large-photon-number states [J]. Physical Review, 2002, A65(5): 053809.

    [18] [18] GIOVANNETTI V, LLOYD S, MAcCONE L, et al. Clock synchronization with dispersion cancellation [J]. Physical Review Letters, 2001, 87(11): 117902.

    [19] [19] GIOVANNETTI V, LLOYD S, MAcCONE L. Quantum-enhanced measurements: Beating the standard quantum limit [J]. Science, 2004, 306(5700): 1330-1336.

    [20] [20] VALENCIA A, SCARCELLI G, SHIH Y. Distant clock synchronization using entangled photon pairs [J]. Physical Review Letters, 2004, 85(13): 2655-2657.

    [21] [21] HOU F Y, QUAN R A, DONG R F, et al. Fiber-optic two-way quantum time transfer with frequency-entangled pulses [J]. Physical Review, 2019, A100(2): 023849.

    [22] [22] MOWER J, ZHANG Z, DESJARDINS P, et al. High-dimensional quantum key distribution using dispersive optics [J]. Physical Review, 2013, A87(6): 062322.

    [23] [23] LEE C, ZHANG Zh Sh, STEINBRECHER G R, et al. Entanglement-based quantum communication secured by nonlocal dispersion cancellation [J]. Physical Review, 2014, A90(6): 062331.

    [24] [24] LIU X, YAO X, WANG H Q, et al. Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20km [J]. Applied Physics Letters, 2019, 114(14): 141104.

    [25] [25] HU X L, ZHONG T, WONG F N C, et al. Nonlocal cancellation of multi-frequency-channel dispersion [J]. Physical Review, 2015, A91(1): 013809.

    [26] [26] QUAN R A, DONG R F, XIANG X, et al. High-precision nonlocal temporal correlation identification of entangled photon pairs for quantum clock synchronization [J]. Review of Scientific Instruments, 2020, 91(12): 123109.

    [27] [27] YAO X, LIU X, YOU L X, et al. Quantum secure ghost imaging [J]. Physical Review, 2018, A98(6): 063816.

    [28] [28] XIANG X, DONG R F, LI B H, et al. Quantification of nonlocal dispersion cancellation for finite frequency entanglement [J]. Optics Express, 2020, 28(12): 17697-17707.

    [29] [29] QUAN R A, WANG M M, HOU F Y, et al. Characterization of frequency entanglement under extended phase-matching conditions [J]. Applied Physics, 2015, B118(3): 431-437.

    [30] [30] HOU F Y, XIANG X, QUAN R A, et al. An efficient source of frequency anti-correlated entanglement at telecom wavelength[J]. Applied Physics, 2016, B122(5):128-136.

    [31] [31] JIN R B, SHIMIZU R, WAKUI K, et al. Widely tunable single photon source with high purity at telecom wavelength [J]. Optics Express, 2013, 21(9): 10659-10666.

    [32] [32] JIN R B, ZHAO P, DENG P G, et al. Spectrally pure states at telecommunications wavelengths from periodically poled MTiOXO4 (M= K, Rb, Cs; X= P, As) crystals [J]. Physical Review Applied, 2016, 6(6): 064017.

    [33] [33] NODURFT I C, SHRINGARPURE S U, KIRBY B T, et al. Nonlocal dispersion cancellation for three or more photons [J]. Physical Review, 2020, A102(1): 013713.

    [34] [34] ZHONG T, WONG F N C. Nonlocal cancellation of dispersion in Franson interferometry [J]. Physical Review, 2013, A88(2): 020103.

    [35] [35] ZHONG T, WONG F N C, RESTELLI A, et al. Efficient single-spatial-mode periodically-poled KTiOPO4 waveguide source for high-dimensional entanglement-based quantum key distribution [J]. Optics Express, 2012, 20(24): 26868-26877.

    [36] [36] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference [J]. Physical Review Letters, 1987, 59(18): 2044-2046.

    [37] [37] STEINBERG A M, KWIAT P G, CHIAO R Y. Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer [J]. Physical Review, 1992, A45(9): 6659-6665.

    [38] [38] NASR M B, SALEH B E A, SERGIENKO A V, et al. Demonstration of dispersion-canceled quantum-optical coherence tomography [J]. Physical Review Letters, 2003, 91(8): 083601.

    [39] [39] MINAEVA O, BONATO C, SALEH B E A, et al. Odd- and even-order dispersion cancellation in quantum interferometry [J]. Physical Review Letters, 2009, 102(10): 100504.

    [40] [40] QIU J, PAN J S, XIANG G Y, et al. Even- and odd-order dispersion cancellation effects in a two-photon interferometer [J]. Journal of the Optical Society of America, 2015, B32(5): 907-911.

    [41] [41] QIU J, XIANG G Y, ZHANG Y Sh, et al. Even- and odd-order dispersion cancellation effects in four-photon quantum interferometry [J]. Chinese Optics Letters, 2014, 12(11): 112701.

    [42] [42] IM D G, KIM Y, KIM Y H. Dispersion cancellation in a quantum interferometer with independent single photons [J]. Optics Express, 2021, 29(2): 2348-2363.

    [43] [43] FAN Y R, YUAN Ch Zh, ZHANG R M, et al. Effect of dispersion on indistinguishability between single-photon wave-packets [J]. Photonics Research, 2021, 9(6): 1134-1143.

    [44] [44] BLACK A N, GIESE E, BRAVERMAN B, et al. Quantum nonlocal aberration cancellation [J]. Physical Review Letters, 2019, 123(14): 143603.

    [45] [45] BONATO C, SERGIENKO A V, SALEH B E A, et al. Even-order aberration cancellation in quantum interferometry [J]. Physical Review Letters, 2008, 101(23): 233603.

    [46] [46] SHTAIF M, ANTONELLI C, BRODSKY M. Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons [J]. Optics Express, 2011, 19(3): 1728-1733.

    [47] [47] MAZUREK M D, SCHREITER K M, PREVEDEL R, et al. Dispersion-cancelled biological imaging with quantum-inspired interferometry [J]. Scientific Reports, 2013, 3(1): 1-5.

    [48] [48] LIU X, YAO X, XUE R, et al. An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution [J]. APL Photonics, 2020, 5(7): 076104.

    [49] [49] LIU J Y, LIU X, ZHANG W, et al. The impact of fiber dispersion on the performance of entanglement-based dispersive optics quantum key distribution [J]. Journal of Electronic Science and Technology, 2021, 19(4): 100119.

    Tools

    Get Citation

    Copy Citation Text

    JIN Ruibo, YANG Zixiang, HAO Xiangying, LI Baihong. Research progress on quantum dispersion cancellation[J]. Laser Technology, 2022, 46(1): 69

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 1, 2021

    Accepted: --

    Published Online: Feb. 28, 2022

    The Author Email: LI Baihong (li-baihong@163.com)

    DOI:10.7510/jgjs.issn.1001-3806.2022.01.006

    Topics