Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 7, 685(2020)

Crystal structures and structural colors of blue phase liquid crystals

XU Xiao-wan*, LIU Yan-jun, and LUO Dan
Author Affiliations
  • [in Chinese]
  • show less
    References(162)

    [1] [1] REINITZER F. Beitrge zur kenntniss des cholesterins [J]. Monatsh. Chem., 1888, 9(1): 421-441.

              REINITZER F. Beitrge zur kenntniss des cholesterins [J]. Monatsh. Chem., 1888, 9(1): 421-441.

    [2] [2] LEHMANN O. Substances with three different liquid states, one isotrope-and two crystalline fluids [J]. Z. Phys. Chem., 1906, 56(6): 750-766.

              LEHMANN O. Substances with three different liquid states, one isotrope-and two crystalline fluids [J]. Z. Phys. Chem., 1906, 56(6): 750-766.

    [3] [3] COATES D, HARRISON K J, GRAY G W. Studies of mesophase transformations for certain Schiff’s base esters [J]. Mol. Cryst. Liq. Cryst., 1973, 22(1/2): 99-122.

              COATES D, HARRISON K J, GRAY G W. Studies of mesophase transformations for certain Schiff’s base esters [J]. Mol. Cryst. Liq. Cryst., 1973, 22(1/2): 99-122.

    [4] [4] ELSER W, POHLMANN J L W, BOYD P R. Cholesteryl n-alkyl carbonates [J]. Mol. Cryst. Liq. Cryst., 1973, 20(1): 77-86.

              ELSER W, POHLMANN J L W, BOYD P R. Cholesteryl n-alkyl carbonates [J]. Mol. Cryst. Liq. Cryst., 1973, 20(1): 77-86.

    [5] [5] MARCUS M A, GOODBY J W. Cholesteric pitch and blue phases in a chiral-racemic mixture [J]. Mol. Cryst. Liq. Cryst., 1982, 72(9/10): 297-305.

              MARCUS M A, GOODBY J W. Cholesteric pitch and blue phases in a chiral-racemic mixture [J]. Mol. Cryst. Liq. Cryst., 1982, 72(9/10): 297-305.

    [6] [6] NICASTRO A J, KEYES P H. Cholesteric blue phases of the cholesteryl N-alkanoates [J]. Phys. Rev. A, 1983, 27(1): 431-437.

              NICASTRO A J, KEYES P H. Cholesteric blue phases of the cholesteryl N-alkanoates [J]. Phys. Rev. A, 1983, 27(1): 431-437.

    [7] [7] CHANISHVILI A, CHILAYA G, ELASHVILI Z M, et al. A wide-temperature blue phase in mixtures of a nematic liquid crystal with non-mesogenic tigogenin caprate [J]. Mol. Cryst. Liq. Cryst. Lett., 1986, 3(3/4): 91-96.

              CHANISHVILI A, CHILAYA G, ELASHVILI Z M, et al. A wide-temperature blue phase in mixtures of a nematic liquid crystal with non-mesogenic tigogenin caprate [J]. Mol. Cryst. Liq. Cryst. Lett., 1986, 3(3/4): 91-96.

    [8] [8] KEYES P H. Is blue phase II fcc? [J]. Phys. Rev. Lett., 1987, 59(1): 83-85.

              KEYES P H. Is blue phase II fcc? [J]. Phys. Rev. Lett., 1987, 59(1): 83-85.

    [9] [9] YANG D K, CROOKER P P. Chiral-racemic phase diagrams of blue-phase liquid crystals [J]. Phys. Rev. A, 1987, 35(10): 4419-4423.

              YANG D K, CROOKER P P. Chiral-racemic phase diagrams of blue-phase liquid crystals [J]. Phys. Rev. A, 1987, 35(10): 4419-4423.

    [10] [10] DEMIKHOV E I, DOLGANOV V K. Pretransitional effects near blue phases of a cholesteric liquid crystal [J]. JETP Lett., 1983, 38(8): 445-447.

              DEMIKHOV E I, DOLGANOV V K. Pretransitional effects near blue phases of a cholesteric liquid crystal [J]. JETP Lett., 1983, 38(8): 445-447.

    [11] [11] DEMIKHOV E I, DOLGANOV V K, KRYLOVA S P. Selective optical reflection in the fog phase [J]. JETP Lett., 1985, 42(1): 16-19.

              DEMIKHOV E I, DOLGANOV V K, KRYLOVA S P. Selective optical reflection in the fog phase [J]. JETP Lett., 1985, 42(1): 16-19.

    [12] [12] KIZEL V A, PROKHOROV V V. Structure of blue phase of cholesteric liquid crystals [J]. JETP Lett., 1984, 38(6): 337-341.

              KIZEL V A, PROKHOROV V V. Structure of blue phase of cholesteric liquid crystals [J]. JETP Lett., 1984, 38(6): 337-341.

    [13] [13] COLLINGS P J. Optical rotatory dispersion measurements in the third cholesteric blue phase [J]. Phys. Rev. A, 1984, 30(4): 1990-1993.

              COLLINGS P J. Optical rotatory dispersion measurements in the third cholesteric blue phase [J]. Phys. Rev. A, 1984, 30(4): 1990-1993.

    [14] [14] YANG D K, CROOKER P P. Blue phase III of chiral liquid crystals in an electric field [J]. Phys. Rev. A, 1988, 37(10): 4001-4005.

              YANG D K, CROOKER P P. Blue phase III of chiral liquid crystals in an electric field [J]. Phys. Rev. A, 1988, 37(10): 4001-4005.

    [15] [15] JOHNSON D L, FLACK J H, CROOKER P P. Structure and properties of the cholesteric blue phases [J]. Phys. Rev. Lett., 1980, 45(8): 641-644.

              JOHNSON D L, FLACK J H, CROOKER P P. Structure and properties of the cholesteric blue phases [J]. Phys. Rev. Lett., 1980, 45(8): 641-644.

    [16] [16] COATES D, GRAY G W. Optical studies of the amorphous liquid-cholesteric liquid crystal transition: the “blue phase” [J]. Phys. Lett. A, 1973, 45(2): 115-116.

              COATES D, GRAY G W. Optical studies of the amorphous liquid-cholesteric liquid crystal transition: the “blue phase” [J]. Phys. Lett. A, 1973, 45(2): 115-116.

    [17] [17] MEIBOOM S, SAMMON M. Structure of the blue phase of a cholesteric liquid crystal [J]. Phys. Rev. Lett., 1980, 44(13): 882-885.

              MEIBOOM S, SAMMON M. Structure of the blue phase of a cholesteric liquid crystal [J]. Phys. Rev. Lett., 1980, 44(13): 882-885.

    [18] [18] TANIMOTO K, CROOKER P P, KOCH G C. Chiral-racemic phase diagram of a blue-phase liquid crystal [J]. Phys. Rev. A, 1985, 32(3): 1893-1895.

              TANIMOTO K, CROOKER P P, KOCH G C. Chiral-racemic phase diagram of a blue-phase liquid crystal [J]. Phys. Rev. A, 1985, 32(3): 1893-1895.

    [19] [19] TANAKA S, YOSHIDA H, KAWATA Y, et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy [J]. Sci. Rep., 2015, 5(1): 16180.

              TANAKA S, YOSHIDA H, KAWATA Y, et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy [J]. Sci. Rep., 2015, 5(1): 16180.

    [20] [20] SALAMON'CZYK M, VAUPOTI N, POCIECHA D, et al. Structure of nanoscale-pitch helical phases: blue phase and twist-bend nematic phase resolved by resonant soft X-ray scattering [J]. Soft Matter, 2017, 13(38): 6694-6699.

              SALAMON'CZYK M, VAUPOTI N, POCIECHA D, et al. Structure of nanoscale-pitch helical phases: blue phase and twist-bend nematic phase resolved by resonant soft X-ray scattering [J]. Soft Matter, 2017, 13(38): 6694-6699.

    [21] [21] XIANG J, LAVRENTOVICH O D. Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching [J]. Appl. Phys. Lett., 2013, 103(5): 051112.

              XIANG J, LAVRENTOVICH O D. Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching [J]. Appl. Phys. Lett., 2013, 103(5): 051112.

    [22] [22] RAO L H, YAN J, WU S T, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal [J]. Appl. Phys. Lett., 2011, 98(8): 081109.

              RAO L H, YAN J, WU S T, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal [J]. Appl. Phys. Lett., 2011, 98(8): 081109.

    [23] [23] KIZHAKIDATHAZHATH R, HIGUCHI H, OKUMURA Y, et al. Weak anchoring interface inducing acrylate copolymer designs for high-performance polymer-stabilized blue phase liquid crystal displays [J]. Chem. Select, 2017, 2(23): 6728-6731.

              KIZHAKIDATHAZHATH R, HIGUCHI H, OKUMURA Y, et al. Weak anchoring interface inducing acrylate copolymer designs for high-performance polymer-stabilized blue phase liquid crystal displays [J]. Chem. Select, 2017, 2(23): 6728-6731.

    [24] [24] HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases [J]. Adv. Mater., 2005, 17(1): 96-98.

              HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases [J]. Adv. Mater., 2005, 17(1): 96-98.

    [25] [25] YAN J, LUO Z Y, WU S T, et al. Low voltage and high contrast blue phase liquid crystal with red-shifted Bragg reflection [J]. Appl. Phys. Lett., 2013, 102(1): 011113.

              YAN J, LUO Z Y, WU S T, et al. Low voltage and high contrast blue phase liquid crystal with red-shifted Bragg reflection [J]. Appl. Phys. Lett., 2013, 102(1): 011113.

    [26] [26] XU D M, CHEN Y, LIU Y F, et al. Refraction effect in an in-plane-switching blue phase liquid crystal cell [J]. Opt. Express, 2013, 21(21): 24721-24735.

              XU D M, CHEN Y, LIU Y F, et al. Refraction effect in an in-plane-switching blue phase liquid crystal cell [J]. Opt. Express, 2013, 21(21): 24721-24735.

    [27] [27] NORDENDORF G, SCHMIDTKE J, WILKES D, et al. Temperature-insensitive electro-optic response of polymer-stabilized blue phases [J]. J. Mater. Chem. C, 2017, 5(3): 518-521.

              NORDENDORF G, SCHMIDTKE J, WILKES D, et al. Temperature-insensitive electro-optic response of polymer-stabilized blue phases [J]. J. Mater. Chem. C, 2017, 5(3): 518-521.

    [28] [28] YAN J, XU D M, CHENG H C, et al. Turning film for widening the viewing angle of a blue phase liquid crystal display [J]. Appl. Opt., 2013, 52(36): 8840-8844.

              YAN J, XU D M, CHENG H C, et al. Turning film for widening the viewing angle of a blue phase liquid crystal display [J]. Appl. Opt., 2013, 52(36): 8840-8844.

    [29] [29] LIN Y H, CHEN H S, CHIANG T H, et al. A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals [J]. Opt. Express, 2011, 19(3): 2556-2561.

              LIN Y H, CHEN H S, CHIANG T H, et al. A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals [J]. Opt. Express, 2011, 19(3): 2556-2561.

    [30] [30] LIU Y F, LAN Y F, HONG Q, et al. Compensation film designs for high contrast wide-view blue phase liquid crystal displays [J]. J. Disp. Technol., 2014, 10(1): 3-6.

              LIU Y F, LAN Y F, HONG Q, et al. Compensation film designs for high contrast wide-view blue phase liquid crystal displays [J]. J. Disp. Technol., 2014, 10(1): 3-6.

    [31] [31] LI P, SUN Y B, ZHAO Y L, et al. High transmittance blue-phase liquid crystal displays with slit-shaped electrode [J]. Liq. Cryst., 2013, 40(10): 1417-1421.

              LI P, SUN Y B, ZHAO Y L, et al. High transmittance blue-phase liquid crystal displays with slit-shaped electrode [J]. Liq. Cryst., 2013, 40(10): 1417-1421.

    [32] [32] SU Z F, CHEN Y Q, LU J G, et al. High-transmittance polymer-stabilised blue-phase liquid crystal display with double-sided protrusion electrodes [J]. Liq. Cryst., 2013, 40(7): 976-979.

              SU Z F, CHEN Y Q, LU J G, et al. High-transmittance polymer-stabilised blue-phase liquid crystal display with double-sided protrusion electrodes [J]. Liq. Cryst., 2013, 40(7): 976-979.

    [33] [33] CUI J P, LI Y, YAN J, et al. Time-multiplexed dual-view display using a blue phase liquid crystal [J]. J. Disp. Technol., 2013, 9(2): 87-90.

              CUI J P, LI Y, YAN J, et al. Time-multiplexed dual-view display using a blue phase liquid crystal [J]. J. Disp. Technol., 2013, 9(2): 87-90.

    [34] [34] YAN J, XING Y F, GUO Z B, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system [J]. Opt. Express, 2015, 23(12): 15256-15264.

              YAN J, XING Y F, GUO Z B, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system [J]. Opt. Express, 2015, 23(12): 15256-15264.

    [35] [35] YOSHIDA H, KOBASHI J. Flat optics with cholesteric and blue phase liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 1909-1919.

              YOSHIDA H, KOBASHI J. Flat optics with cholesteric and blue phase liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 1909-1919.

    [36] [36] ZHU G, WEI B Y, SHI L Y, et al. A fast response variable optical attenuator based on blue phase liquid crystal [J]. Opt. Express, 2013, 21(5): 5332-5337.

              ZHU G, WEI B Y, SHI L Y, et al. A fast response variable optical attenuator based on blue phase liquid crystal [J]. Opt. Express, 2013, 21(5): 5332-5337.

    [37] [37] WAHLE M, BRASSAT K, EBEL J, et al. Two-dimensional switchable blue phase gratings manufactured by nanosphere lithography [J]. Opt. Express, 2017, 25(19): 22608-22619.

              WAHLE M, BRASSAT K, EBEL J, et al. Two-dimensional switchable blue phase gratings manufactured by nanosphere lithography [J]. Opt. Express, 2017, 25(19): 22608-22619.

    [38] [38] KHOO I C. DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals [J]. Opt. Lett., 2015, 40(1): 60-63.

              KHOO I C. DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals [J]. Opt. Lett., 2015, 40(1): 60-63.

    [39] [39] YAN J, LI Q, HU K. Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure [J]. J. Appl. Phys., 2013, 114(15): 153104.

              YAN J, LI Q, HU K. Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure [J]. J. Appl. Phys., 2013, 114(15): 153104.

    [40] [40] LUO D, DAI H T, SUN X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal [J]. Opt. Express, 2013, 21(25): 31318-31323.

              LUO D, DAI H T, SUN X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal [J]. Opt. Express, 2013, 21(25): 31318-31323.

    [41] [41] HUANG B Y, LIN S H, LIN K C, et al. Switchable two-dimensional liquid crystal grating in blue phase [J]. Crystals, 2017, 7(6): 182.

              HUANG B Y, LIN S H, LIN K C, et al. Switchable two-dimensional liquid crystal grating in blue phase [J]. Crystals, 2017, 7(6): 182.

    [42] [42] HONG H. Analysis of focal length of blue-phase liquid crystal (BPLC) cylindrical lens for the light of the various incident angles and polarisations [J]. Liq. Cryst., 2013, 40(4): 450-457.

              HONG H. Analysis of focal length of blue-phase liquid crystal (BPLC) cylindrical lens for the light of the various incident angles and polarisations [J]. Liq. Cryst., 2013, 40(4): 450-457.

    [43] [43] LIN Y H, CHEN H S, LIN H C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals [J]. Appl. Phys. Lett., 2010, 96(11): 113505.

              LIN Y H, CHEN H S, LIN H C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals [J]. Appl. Phys. Lett., 2010, 96(11): 113505.

    [44] [44] LI Y, WU S T. Polarization independent adaptive microlens with a blue-phase liquid crystal [J]. Opt. Express, 2011, 19(9): 8045-8050.

              LI Y, WU S T. Polarization independent adaptive microlens with a blue-phase liquid crystal [J]. Opt. Express, 2011, 19(9): 8045-8050.

    [45] [45] LI Y, LIU Y F, LI Q, et al. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film [J]. Appl. Opt., 2012, 51(14): 2568-2572.

              LI Y, LIU Y F, LI Q, et al. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film [J]. Appl. Opt., 2012, 51(14): 2568-2572.

    [46] [46] LIU Y F, LI Y, WU S T. Polarization-independent adaptive lens with two different blue-phase liquid-crystal layers [J]. Appl. Opt., 2013, 52(14): 3216-3220.

              LIU Y F, LI Y, WU S T. Polarization-independent adaptive lens with two different blue-phase liquid-crystal layers [J]. Appl. Opt., 2013, 52(14): 3216-3220.

    [47] [47] LIN S H, HUANG L S, LIN C H, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals [J]. Opt. Express, 2014, 22(1): 925-930.

              LIN S H, HUANG L S, LIN C H, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals [J]. Opt. Express, 2014, 22(1): 925-930.

    [48] [48] KIM K, HUR S T, KIM S, et al. A well-aligned simple cubic blue phase for a liquid crystal laser [J]. J. Mater. Chem. C, 2015, 3(21): 5383-5388.

              KIM K, HUR S T, KIM S, et al. A well-aligned simple cubic blue phase for a liquid crystal laser [J]. J. Mater. Chem. C, 2015, 3(21): 5383-5388.

    [49] [49] ZHUO G Y, HUANG S W, LIN S H. Wide-angle lasing from photonic crystal nanostructures of a liquid-crystalline blue phase [J]. J. Mater. Chem. C, 2019, 7(21): 6433-6439.

              ZHUO G Y, HUANG S W, LIN S H. Wide-angle lasing from photonic crystal nanostructures of a liquid-crystalline blue phase [J]. J. Mater. Chem. C, 2019, 7(21): 6433-6439.

    [50] [50] LIN J D, WANG T Y, MO T S, et al. Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase [J]. Sci. Rep., 2016, 6(1): 30407.

              LIN J D, WANG T Y, MO T S, et al. Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase [J]. Sci. Rep., 2016, 6(1): 30407.

    [51] [51] WANG L, WANG M, YANG M C, et al. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization [J]. Chin. Phys. B, 2016, 25(9): 094217.

              WANG L, WANG M, YANG M C, et al. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization [J]. Chin. Phys. B, 2016, 25(9): 094217.

    [52] [52] LAVRI M, CORDOYIANNIS G, TZITZIOS V, et al. Blue phase stabilization by CoPt-decorated reduced-graphene oxide nanosheets dispersed in a chiral liquid crystal [J]. J. Appl. Phys., 2020, 127(9): 095101.

              LAVRI M, CORDOYIANNIS G, TZITZIOS V, et al. Blue phase stabilization by CoPt-decorated reduced-graphene oxide nanosheets dispersed in a chiral liquid crystal [J]. J. Appl. Phys., 2020, 127(9): 095101.

    [53] [53] JEONG H C, LE K V, GIM M J, et al. Transition between widened BPs by light irradiation using photo-active bent-core liquid crystal with chiral dopant [J]. J. Mater. Chem., 2012, 22(11): 4627-4630.

              JEONG H C, LE K V, GIM M J, et al. Transition between widened BPs by light irradiation using photo-active bent-core liquid crystal with chiral dopant [J]. J. Mater. Chem., 2012, 22(11): 4627-4630.

    [54] [54] LIU H P, SHEN D, WANG X Q, et al. Wide blue phase range induced by bent-shaped molecules with acrylate end groups [J]. Opt. Mater. Express, 2016, 6(2): 436-443.

              LIU H P, SHEN D, WANG X Q, et al. Wide blue phase range induced by bent-shaped molecules with acrylate end groups [J]. Opt. Mater. Express, 2016, 6(2): 436-443.

    [55] [55] COLES H J, PIVNENKO M N. Liquid crystal ‘blue phases’ with a wide temperature range [J]. Nature, 2005, 436(7053): 997-1000.

              COLES H J, PIVNENKO M N. Liquid crystal ‘blue phases’ with a wide temperature range [J]. Nature, 2005, 436(7053): 997-1000.

    [56] [56] KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases [J]. Nat. Mater., 2002, 1(1): 64-68.

              KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases [J]. Nat. Mater., 2002, 1(1): 64-68.

    [57] [57] ENDO N, MATSUMOTO T, KIKUCHI H, et al. Study of polymer-stabilised blue phase liquid crystal on a single substrate [J]. Liq. Cryst., 2016, 43(1): 66-76.

              ENDO N, MATSUMOTO T, KIKUCHI H, et al. Study of polymer-stabilised blue phase liquid crystal on a single substrate [J]. Liq. Cryst., 2016, 43(1): 66-76.

    [58] [58] KIKUCHI H, IZENA S, HIGUCHI H, et al. A giant polymer lattice in a polymer-stabilized blue phase liquid crystal [J]. Soft Matter, 2015, 11(23): 4572-4575.

              KIKUCHI H, IZENA S, HIGUCHI H, et al. A giant polymer lattice in a polymer-stabilized blue phase liquid crystal [J]. Soft Matter, 2015, 11(23): 4572-4575.

    [59] [59] MANDA R, KIM M S, SHIN E J, et al. Phase stabilisation of blue-phase liquid crystals using a polymerisable chiral additive [J]. Liq. Cryst., 2017, 44(6): 1059-1068.

              MANDA R, KIM M S, SHIN E J, et al. Phase stabilisation of blue-phase liquid crystals using a polymerisable chiral additive [J]. Liq. Cryst., 2017, 44(6): 1059-1068.

    [60] [60] KIMURA M, NAGUMO N, OO T N, et al. Single-substrate polymer-stabilized blue phase liquid crystal display [J]. Opt. Mater. Express, 2013, 3(12): 2086-2095.

              KIMURA M, NAGUMO N, OO T N, et al. Single-substrate polymer-stabilized blue phase liquid crystal display [J]. Opt. Mater. Express, 2013, 3(12): 2086-2095.

    [61] [61] XU X W, LIU Y J, LUO D. Flexible blue phase liquid crystal film with high stability based on polymerized liquid crystals [J]. Liq. Cryst., 2020, 47(3): 399-403.

              XU X W, LIU Y J, LUO D. Flexible blue phase liquid crystal film with high stability based on polymerized liquid crystals [J]. Liq. Cryst., 2020, 47(3): 399-403.

    [62] [62] CHEN K M, GAUZA S, XIANYU H Q, et al. Hysteresis effects in blue-phase liquid crystals [J]. J. Disp. Technol., 2010, 6(8): 318-322.

              CHEN K M, GAUZA S, XIANYU H Q, et al. Hysteresis effects in blue-phase liquid crystals [J]. J. Disp. Technol., 2010, 6(8): 318-322.

    [63] [63] HU D C, LI W H, CHEN X W, et al. Template effect on reconstruction of blue phase liquid crystal [J]. J. Soc. Inform. Disp., 2016, 24(10): 593-599.

              HU D C, LI W H, CHEN X W, et al. Template effect on reconstruction of blue phase liquid crystal [J]. J. Soc. Inform. Disp., 2016, 24(10): 593-599.

    [64] [64] RAVNIK M, FUKUDA J I. Templated blue phases [J]. Soft Matter, 2015, 11(43): 8417-8425.

              RAVNIK M, FUKUDA J I. Templated blue phases [J]. Soft Matter, 2015, 11(43): 8417-8425.

    [65] [65] CASTLES F, DAY F V, MORRIS S M, et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications [J]. Nat. Mater., 2012, 11(7): 599-603.

              CASTLES F, DAY F V, MORRIS S M, et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications [J]. Nat. Mater., 2012, 11(7): 599-603.

    [66] [66] CASTLES F, MORRIS S M, HUNG J M C, et al. Stretchable liquid-crystal blue-phase gels [J]. Nat. Mater., 2014, 13(8): 817-821.

              CASTLES F, MORRIS S M, HUNG J M C, et al. Stretchable liquid-crystal blue-phase gels [J]. Nat. Mater., 2014, 13(8): 817-821.

    [67] [67] CHEN Y, WU S T. Electric field-induced monodomain blue phase liquid crystals [J]. Appl. Phys. Lett., 2013, 102(17): 171110.

              CHEN Y, WU S T. Electric field-induced monodomain blue phase liquid crystals [J]. Appl. Phys. Lett., 2013, 102(17): 171110.

    [68] [68] ORZECHOWSKI K, SALA-TEFELSKA M M, SIERAKOWSKI M W, et al. Optical properties of cubic blue phase liquid crystal in photonic microstructures [J]. Opt. Express, 2019, 27(10): 14270-14282.

              ORZECHOWSKI K, SALA-TEFELSKA M M, SIERAKOWSKI M W, et al. Optical properties of cubic blue phase liquid crystal in photonic microstructures [J]. Opt. Express, 2019, 27(10): 14270-14282.

    [69] [69] XU X W, LIU Y J, WANG F, et al. Narrow linewidth and temperature insensitive blue phase liquid crystal films [J]. IEEE Photonics J., 2018, 10(6): 7001007.

              XU X W, LIU Y J, WANG F, et al. Narrow linewidth and temperature insensitive blue phase liquid crystal films [J]. IEEE Photonics J., 2018, 10(6): 7001007.

    [70] [70] ZHENG Z G, YUAN C L, HU W, et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal [J]. Adv. Mater., 2017, 29(42): 1703165.

              ZHENG Z G, YUAN C L, HU W, et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal [J]. Adv. Mater., 2017, 29(42): 1703165.

    [71] [71] CHEN C W, HOU C T, LI C C, et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases [J]. Nat. Commun., 2017, 8(1): 727.

              CHEN C W, HOU C T, LI C C, et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases [J]. Nat. Commun., 2017, 8(1): 727.

    [72] [72] MARTNEZ-GONZLEZ J A, LI X, SADATI M, et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals [J]. Nat. Commun., 2017, 8(1): 15854.

              MARTNEZ-GONZLEZ J A, LI X, SADATI M, et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals [J]. Nat. Commun., 2017, 8(1): 15854.

    [73] [73] LI X, MARTNEZ-GONZLEZ J A, HERNNDEZ-ORTIZ J P, et al. Mesoscale martensitic transformation in single crystals of topological defects [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(38): 10011-10016.

              LI X, MARTNEZ-GONZLEZ J A, HERNNDEZ-ORTIZ J P, et al. Mesoscale martensitic transformation in single crystals of topological defects [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(38): 10011-10016.

    [74] [74] LI X, MARTNEZ-GONZLEZ J A, GUZMN O, et al. Sculpted grain boundaries in soft crystals [J]. Sci. Adv., 2019, 5(11): eaax9112.

              LI X, MARTNEZ-GONZLEZ J A, GUZMN O, et al. Sculpted grain boundaries in soft crystals [J]. Sci. Adv., 2019, 5(11): eaax9112.

    [75] [75] LI X, MARTNEZ-GONZLEZ J A, PARK K, et al. Perfection in nucleation and growth of blue-phase single crystals: small free-energy required to self-assemble at specific lattice orientation [J]. ACS Appl. Mater. Interfaces, 2019, 11(9): 9487-9495.

              LI X, MARTNEZ-GONZLEZ J A, PARK K, et al. Perfection in nucleation and growth of blue-phase single crystals: small free-energy required to self-assemble at specific lattice orientation [J]. ACS Appl. Mater. Interfaces, 2019, 11(9): 9487-9495.

    [76] [76] YANG J J, ZHAO W D, YANG Z, et al. Printable photonic polymer coating based on a monodomain blue phase liquid crystal network [J]. J. Mater. Chem. C, 2019, 7(44): 13764-13769.

              YANG J J, ZHAO W D, YANG Z, et al. Printable photonic polymer coating based on a monodomain blue phase liquid crystal network [J]. J. Mater. Chem. C, 2019, 7(44): 13764-13769.

    [77] [77] GUO D Y, CHEN C W, LI C C, et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction [J]. Nat. Mater., 2020, 19(1): 94-101.

              GUO D Y, CHEN C W, LI C C, et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction [J]. Nat. Mater., 2020, 19(1): 94-101.

    [78] [78] XU X W, LIU Z, LIU Y J, et al. Electrically switchable, hyper-reflective blue phase liquid crystals films [J]. Adv. Opt. Mater., 2018, 6(3): 1700891.

              XU X W, LIU Z, LIU Y J, et al. Electrically switchable, hyper-reflective blue phase liquid crystals films [J]. Adv. Opt. Mater., 2018, 6(3): 1700891.

    [79] [79] WANG M, ZOU C, LI C Y, et al. Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application [J]. Adv. Opt. Mater., 2018, 6(16): 1800409.

              WANG M, ZOU C, LI C Y, et al. Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application [J]. Adv. Opt. Mater., 2018, 6(16): 1800409.

    [80] [80] WANG M, ZOU C, SUN J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Adv. Funct. Mater., 2017, 27(46): 1702261.

              WANG M, ZOU C, SUN J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Adv. Funct. Mater., 2017, 27(46): 1702261.

    [81] [81] LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Adv. Mater., 2013, 25(36): 5050-5054.

              LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Adv. Mater., 2013, 25(36): 5050-5054.

    Tools

    Get Citation

    Copy Citation Text

    XU Xiao-wan, LIU Yan-jun, LUO Dan. Crystal structures and structural colors of blue phase liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 685

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 21, 2020

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: XU Xiao-wan (xuxw@mail.sustech.edu.cn)

    DOI:10.37188/yjyxs20203507.0685

    Topics