Journal of Infrared and Millimeter Waves, Volume. 43, Issue 4, 551(2024)
Simulation analysis of radiation terahertz wave characteristics of photoconductive antenna materials
[1] Pandit N, Jaiswal R K, Pathak N P. Towards development of a non-intrusive and label-free THz sensor for rapid detection of aqueous bio-samples using microfluidic approach[J]. IEEE Transactions on Biomedical Circuits and Systems, 15, 91-101(2021).
[2] Markelz A G, Mittleman D M. Perspective on terahertz applications in bioscience and biotechnology[J]. ACS Photonics, 9, 1117-1126(2022).
[3] Yan Z, Zhu L G, Meng K et al. THz medical imaging: from in vitro to in vivo[J]. Trends in Biotechnology, 40, 816-830(2022).
[4] Shen S, Liu X, Shen Y et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 10, 2101008(2022).
[5] Leitenstorfer A, Moskalenko A S, Kampfrath T et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 56, 223001(2023).
[6] Sarieddeen H, Alouini M S, Al-Naffouri T Y. An overview of signal processing techniques for terahertz communications[J]. Proceedings of the IEEE, 109, 1628-1665(2021).
[7] Akyildiz I F, Han C, Hu Z et al. Terahertz band communication: An old problem revisited and research directions for the next decade[J]. IEEE Transactions on Communications, 70, 4250-4285(2022).
[8] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles[J]. Applied Physics Letters, 45, 284-286(1984).
[9] Zhang X C, Ma X F, Jin Y et al. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 61, 3080-3082(1992).
[10] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases[J]. Physical Review Letters, 102, 093001(2009).
[11] Zhang L L, Wang W M, Wu T et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 12, 014005(2019).
[12] You D, Jones R R, Bucksbaum P H et al. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses[J]. Optics Letters, 18, 290-292(1993).
[13] Tani M, Matsuura S, Sakai K et al. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs[J]. Applied Optics, 36, 7853-7859(1997).
[14] Holzman J F, Elezzabi A Y. Two-photon photoconductive terahertz generation in ZnSe[J]. Applied physics letters, 83, 2967-2969(2003).
[15] Imafuji O, Singh B P, Hirose Y et al. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch[J]. Applied Physics Letters, 91, 071112(2007).
[16] Ropagnol X, Bouvier M, Reid M et al. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas[J]. Journal of Applied Physics, 116, 043107(2014).
[17] Darrow J T, Zhang X C, Auston D H et al. Saturation properties of large-aperture photoconducting antennas[J]. IEEE Journal of Quantum Electronics, 28, 1607-1616(1992).
[18] Tong-Yi Z, Jun-Cheng C. Study of the surface and far fields of terahertz radiation generated by large-aperture photoconductive antennas[J]. Chinese Physics, 13, 1742-1746(2004).
[19] Ropagnol X, Morandotti R, Ozaki T et al. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas[J]. IEEE Photonics Journal, 3, 174-186(2011).
[20] Kaminski N, Hilt O. SiC and GaN devices–wide bandgap is not all the same[J]. IET Circuits, 8, 227-236(2014).
Get Citation
Copy Citation Text
Lei HOU, Xiao-Bo WU, Lei YANG, Wei SHI, Yu-Hua HANG. Simulation analysis of radiation terahertz wave characteristics of photoconductive antenna materials[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 551
Category: Research Articles
Received: Oct. 19, 2023
Accepted: --
Published Online: Aug. 27, 2024
The Author Email: Lei HOU (houleixaut@126.com)