Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618012(2024)

Research Progress of the Label-Free Microscopy Based on Manipulation of Optical Field with Thin Films (Invited)

Douguo Zhang*
Author Affiliations
  • Department of Optics and Optical Engineering, School of Physical Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • show less
    References(60)

    [1] Tang J F, Gu P F, Liu X[M]. Modern optical thin film technology(2006).

    [2] Macleod H A, 徐德刚, 贾东方[M]. 薄膜光学(2016).

         Macleod H A, XU D G, JIA D F[M]. Thin-film optical filters(2016).

    [3] Fan Z X, Shao J D, Yi K[M]. Optical film and its application(2014).

    [4] Kaiser N, Pulker H K, 刘旭, 王占山, 易葵[M]. 光学干涉薄膜(2008).

         Kaiser N, Pulker H K, Liu X, Wang Z S, Yi K[M]. Optical interference coatings(2008).

    [5] Joannopoulos J D, Johnson S G, Winn J N et al[M]. Photonic crystals: molding the flow of light(2011).

    [6] Maier S A[M]. Plasmonics: Fundamentals and Applications(2007).

    [7] Raether H[M]. Surface plasmons on smooth and rough surfaces and on gratings(1988).

    [8] Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory[J]. Journal of the Optical Society of America, 67, 423-438(1977).

    [9] Kuai Y, Chen J X, Fan Z T et al. Planar photonic chips with tailored angular transmission for high-contrast-imaging devices[J]. Nature Communications, 12, 6835(2021).

    [10] Liu Y, Huang M C, Chen Q K et al. Single planar photonic chip with tailored angular transmission for multiple-order analog spatial differentiator[J]. Nature Communications, 13, 7944(2022).

    [11] Huang B, Yu F, Zare R N. Surface plasmon resonance imaging using a high numerical aperture microscope objective[J]. Analytical Chemistry, 79, 2979-2983(2007).

    [12] Wang W, Yang Y Z, Wang S P et al. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells[J]. Nature Chemistry, 4, 846-853(2012).

    [13] Shan X N, Díez-Pérez I, Wang L J et al. Imaging the electrocatalytic activity of single nanoparticles[J]. Nature Nanotechnology, 7, 668-672(2012).

    [14] Shan X N, Patel U, Wang S P et al. Imaging local electrochemical current via surface plasmon resonance[J]. Science, 327, 1363-1366(2010).

    [15] Wang S P, Shan X N, Patel U et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 16028-16032(2010).

    [16] Chen J, Zhou K, Wang Y J et al. Measuring the activation energy barrier for the nucleation of single nanosized vapor bubbles[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 12678-12683(2019).

    [17] Jiang Y Y, Su H A, Wei W et al. Tracking the rotation of single CdS nanorods during photocatalysis with surface plasmon resonance microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 6630-6634(2019).

    [18] Zhou X L, Yang Y Z, Wang S P et al. Surface plasmon resonance microscopy: from single-molecule sensing to single-cell imaging[J]. Angewandte Chemie (International Ed. in English), 59, 1776-1785(2020).

    [19] Wu G, Qian C, Lü W L et al. Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry[J]. Nature Communications, 14, 4194(2023).

    [20] Kuai Y, Chen J X, Tang X et al. Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination[J]. Science Advances, 5, eaav5335(2019).

    [21] Chazot C A C, Nagelberg S, Rowlands C J et al. Luminescent surfaces with tailored angular emission for compact dark-field imaging devices[J]. Nature Photonics, 14, 310-315(2020).

    [22] Kats M A. Dark field on a chip[J]. Nature Photonics, 14, 266-267(2020).

    [23] Fan Z T, Kuai Y, Tang X et al. Chip-based wide field-of-view total internal reflection fluorescence microscopy[J]. Optics Letters, 47, 4303-4306(2022).

    [24] Ortega Arroyo J, Cole D, Kukura P. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging[J]. Nature Protocols, 11, 617-633(2016).

    [25] Zhu T F, Zhou Y H, Lou Y J et al. Plasmonic computing of spatial differentiation[J]. Nature Communications, 8, 15391(2017).

    [26] Zhou Y, Zheng H Y, Kravchenko I I et al. Flat optics for image differentiation[J]. Nature Photonics, 14, 316-323(2020).

    [27] Wesemann L, Rickett J, Song J C et al. Nanophotonics enhanced coverslip for phase imaging in biology[J]. Light: Science & Applications, 10, 98(2021).

    [28] Zhou J X, Qian H L, Zhao J X et al. Two-dimensional optical spatial differentiation and high-contrast imaging[J]. National Science Review, 8, nwaa176(2021).

    [29] Zhou J X, Qian H L, Chen C F et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 11137-11140(2019).

    [30] Marr D, Hildreth E, Brenner S. Theory of edge detection[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 207, 187-217(1980).

    [31] Zhou J X, Liu S K, Qian H L et al. Metasurface enabled quantum edge detection[J]. Science Advances, 6, eabc4385(2020).

    [32] Jin C Q, Yang Y M. Transmissive nonlocal multilayer thin film optical filter for image differentiation[J]. Nanophotonics, 10, 3519-3525(2021).

    [33] Guo S, Hu M, Zamora M L et al. Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 17373-17378(2014).

    [34] Kong X R, Castarède D, Thomson E S et al. A surface-promoted redox reaction occurs spontaneously on solvating inorganic aerosol surfaces[J]. Science, 374, 747-752(2021).

    [35] Lee S, Wi H S, Jo W et al. Multiple pathways of crystal nucleation in an extremely supersaturated aqueous potassium dihydrogen phosphate (KDP) solution droplet[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13618-13623(2016).

    [36] Bondy A L, Bonanno D, Moffet R C et al. The diverse chemical mixing state of aerosol particles in the southeastern United States[J]. Atmospheric Chemistry and Physics, 18, 12595-12612(2018).

    [37] Kirpes R M, Bondy A L, Bonanno D et al. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic[J]. Atmospheric Chemistry and Physics, 18, 3937-3949(2018).

    [38] Hu J, Xie C G, Xu L et al. Direct analysis of soil composition for source apportionment by laser ablation single-particle aerosol mass spectrometry[J]. Environmental Science & Technology, 55, 9721-9729(2021).

    [39] Wang M J, Zheng N, Zhao D F et al. Using micro-raman spectroscopy to investigate chemical composition, mixing states, and heterogeneous reactions of individual atmospheric particles[J]. Environmental Science & Technology, 55, 10243-10254(2021).

    [40] Xie Z B, Gui H Q, Zhang J S et al. Measurement techniques new progress of atmospheric fine particles[J]. Energy Environmental Protection, 37, 16-29(2023).

    [41] Kuai Y, Xie Z B, Chen J X et al. Real-time measurement of the hygroscopic growth dynamics of single aerosol nanoparticles with Bloch surface wave microscopy[J]. ACS Nano, 14, 9136-9144(2020).

    [42] Xie Z B, Kuai Y, Liu J G et al. In situ quantitative observation of hygroscopic growth of single nanoparticle aerosol by surface plasmon resonance microscopy[J]. Analytical Chemistry, 92, 11062-11071(2020).

    [43] Yang B, Xie Z B, Liu J G et al. Investigating the hygroscopicities of calcium and magnesium salt particles aged with SO2 using surface plasmon resonance microscopy[J]. Science of the Total Environment, 867, 161588(2023).

    [44] Xie Z B, Zhang J S, Gui H Q et al. Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer[J]. Atmospheric Chemistry and Physics, 23, 2079-2088(2023).

    [45] Hill W, Lim E L, Weeden C E et al. Lung adenocarcinoma promotion by air pollutants[J]. Nature, 616, 159-167(2023).

    [46] Kennedy I M. The health effects of combustion-generated aerosols[J]. Proceedings of the Combustion Institute, 31, 2757-2770(2007).

    [47] Qi Y, Wei S T, Xin T et al. Passage of exogeneous fine particles from the lung into the brain in humans and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117083119(2022).

    [48] Ge M F, Tong S R[M]. Atmospheric chemistry kinetics(2016).

    [49] Liu Y, Kuai Y, Zhan Q W et al. Wide-field optical sizing of single nanoparticles with 10 nm accuracy[J]. Science China Physics, Mechanics & Astronomy, 64, 294213(2021).

    [50] Yu X C, Zhi Y Y, Tang S J et al. Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field[J]. Light: Science & Applications, 7, 18003(2018).

    [51] Tang S J, Liu S, Yu X C et al. Sensors: on-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects (adv. mater. 25/2018)[J]. Advanced Materials, 30, 1800262(2018).

    [52] Fan Z T, You X X, Xie Z B et al. Chip-based dark-filed microscopy for sensing the dynamical changes of single aerosol nanoparticles[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 1-7(2023).

    [53] Ye X, Sun J C, Jiang W et al. Ultracompact multimode meta-microscope based on both spatial and guided-wave illumination[J]. Advanced Devices & Instrumentation, 4, 23(2023).

    [54] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [55] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [56] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [57] Chen Y H, Liu W J, Zhang Z M et al. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy[J]. Nature Communications, 9, 4818(2018).

    [58] Mu S Q, Dong D S, Shi K B. Label-free optical imaging technology[J]. Laser & Optoelectronics Progress, 59, 1200001(2022).

    Tools

    Get Citation

    Copy Citation Text

    Douguo Zhang. Research Progress of the Label-Free Microscopy Based on Manipulation of Optical Field with Thin Films (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Aug. 7, 2023

    Accepted: Oct. 13, 2023

    Published Online: Mar. 20, 2024

    The Author Email: Douguo Zhang (dgzhang@ustc.edu.cn)

    DOI:10.3788/LOP231869

    CSTR:32186.14.LOP231869

    Topics