Optics and Precision Engineering, Volume. 33, Issue 10, 1627(2025)

Research on water identification and rapid analysis algorithm for components based on 3d fluorescence spectroscopy

Zancheng JIANG1,2, Ruijie WANG1, Xiaoliang XU1, Binqiang YE3,4、*, and Peng FENG1、*
Author Affiliations
  • 1The Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing400044, China
  • 2Sichuan Belam Technology Co., Ltd., Mianyang61900, China
  • 3College of Artificial Intelligence, Chongqing University of Technology, Chongqing400054, China
  • 4School of Microelectronics and Communication Engineering, Chongqing University, Chongqing000, China
  • show less
    References(41)

    [1] LIU W Q, CHEN Z Y, LIU J G et al. Advances with respect to the environmental spectroscopy monitoring technology[J]. Acta Optica Sinica, 40, 7-14(2020).

         刘文清, 陈臻懿, 刘建国. 环境监测领域中光谱学技术进展[J]. 光学学报, 40, 7-14(2020).

    [3] HYNES N R J, KUMAR J S, KAMYAB H et al. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-a comprehensive review[J]. Journal of Cleaner Production, 272, 122636(2020).

    [4] JIA W S, ZHANG H Z, MA J et al. Study on the predication modeling of COD for water based on UV-VIS spectroscopy and CNN algorithm of deep learning[J]. Spectroscopy and Spectral Analysis, 40, 2981-2988(2020).

         贾文珅, 张恒之, 马洁. 基于紫外-可见光谱与深度学习CNN算法的水质COD预测模型研究[J]. 光谱学与光谱分析, 40, 2981-2988(2020).

    [5] YIN H, YU Q J, HOU D B et al. In-situ detection of water quality anomaly with UV/vis spectrum based on supervised learning[J]. Spectroscopy and Spectral Analysis, 39, 491(2019).

         尹航, 俞巧君, 侯迪波. 基于监督学习的紫外-可见光光谱水质在线异常检测方法研究[J]. 光谱学与光谱分析, 39, 491(2019).

    [6] 杨欣, 吴支行, 叶寅. 店埠河农业小流域水体溶解性有机质三维荧光光谱的平行因子分析[J]. 光谱学与光谱分析, 42, 978-983(2022).

         YANG X, WU Z H, YE Y et al. Parallel factor analysis of fluorescence excitation emission matrix spectroscopy of DOM in waters of agricultural watershed of dianbu river[J]. Spectroscopy and Spectral Analysis, 42, 978-983(2022).

    [7] 陈颖, 段玮靓, 杨英. 基于三维荧光光谱和GBDT-LR的褐潮藻辨识[J]. 光学学报, 42, 1230001(2022).

         CHEN Y, DUAN W L, YANG Y et al. Identification of brown tide algae based on three-dimensional fluorescence spectra and GBDT-LR[J]. Acta Optica Sinica, 42, 1230001(2022).

    [8] 刘传旸, 柴一荻, 徐宪根. 南方某河水质荧光指纹特征及污染溯源[J]. 光谱学与光谱分析, 41, 2142-2147(2021).

         LIU C Y, CHAI Y D, XU X G et al. Aqueous fluorescence fingerprint characteristics and discharge source identification of a river in Southern China[J]. Spectroscopy and Spectral Analysis, 41, 2142-2147(2021).

    [9] 钟婷婷, 林涛, 刘威. 饮用水处理过程中全氟化合物的分布、转化及去向[J]. 环境科学, 44, 2613-2621(2023).

         ZHONG T T, LIN T, LIU W. Distribution, tansformation, and fate of per-and polyfluoroalkyl substances in drinking water treatment[J]. Environmental Science, 44, 2613-2621(2023).

    [10] SHI W X, ZHUANG W E et al. Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry[J]. Water Research, 188, 116406(2021).

    [11] CHEN Z Y, LI S Y. Seasonal variation of DOM spectral characteristics of rivers with different urbanization levels in the Three Gorges Reservoir area[J]. Huan Jing Ke Xue, 42, 195-203(2021).

    [12] CHENG C, WU J, YOU L D et al. Novel insights into variation of dissolved organic matter during textile wastewater treatment by fluorescence excitation emission matrix[J]. Chemical Engineering Journal, 335, 13-21(2018).

    [13] CIFUENTES-CABEZAS M, GALINHA C F, CRESPO J G et al. Nanofiltration of wastewaters from olive oil production: Study of operating conditions and analysis of fouling by 2D fluorescence and FTIR spectroscopy[J]. Chemical Engineering Journal, 454, 140025(2023).

    [14] GAO B B, WANG X, HU S G et al. 3-D fluorescence characteristics of livestock and poultry breeding wastewater[J]. The Administration and Technique of Environmental Monitoring, 34, 60-63(2022).

         高贝贝, 王欣, 胡术刚. 畜禽养殖废水的三维荧光特征[J]. 环境监测管理与技术, 34, 60-63(2022).

    [15] NIE J X, YAN S W, LIAN L S et al. Development of fluorescence surrogates to predict the ferrate(VI) oxidation of pharmaceuticals in wastewater effluents[J]. Water Research, 185, 116256(2020).

    [16] PELEATO N M, LEGGE R L, ANDREWS R C. Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products[J]. Water Research, 136, 84-94(2018).

    [17] HOU M Z, MA Y Q, TIAN S L et al. Research on water pollution traceability based on convolutional neural network identification of three-dimensional fluorescence spectrum[J]. Environmental Monitoring in China, 38, 188-195(2022).

         侯茂泽, 马艳琼, 田森林. 基于卷积神经网络识别三维荧光光谱的水污染溯源研究[J]. 中国环境监测, 38, 188-195(2022).

    [18] XU R Z, CAO J S, FENG G Y et al. Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning[J]. Chemical Engineering Journal, 430, 132893(2022).

    [19] RUAN K, ZHAO S, JIANG X Q et al. A 3D fluorescence classification and component prediction method based on VGG convolutional neural network and PARAFAC analysis method[J]. Applied Sciences, 12, 4886(2022).

    [20] 陈庆, 汤斌, 缪俊锋. 基于荧光光谱的水体分类与荧光组分识别方法[J]. 光学学报, 43, 326-336(2023).

         CHEN Q, TANG B, MIAO J F et al. Water sample classification and fluorescence component identification based on fluorescence spectrum[J]. Acta Optica Sinica, 43, 326-336(2023).

    [21] MURPHY K R, STEDMON C A, GRAEBER D et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC[J]. Analytical Methods, 5, 6557-6566(2013).

    [22] YUAN Y Y, WANG X J, LIU X Y et al. Novel automatic de-scattering method for three-dimensional fluorescence spectra based on deep learning[J]. Microchemical Journal, 204, 111145(2024).

    [23] DIERKER S B, ARONSON M C. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering[J]. The Review of Scientific Instruments, 89(2018).

    [24] 伍卓慧, 黄冰佳, 李学勤. 一种自适应的三维荧光光谱去散射方法[J]. 光谱学与光谱分析, 44, 969-976(2024).

         WU Z H, HUANG B J, LI X Q et al. A self-adapting method for removing scatterings in the excitation-emission matrix spectroscopy[J]. Spectroscopy and Spectral Analysis, 44, 969-976(2024).

    [25] HUANG Y H, YANG R X, GENG X et al. Two filters for acquiring the profiles from images obtained from weak-light background, fluorescence microscope, transmission electron microscope, and near-infrared camera[J]. Sensors, 23, 6207(2023).

    [26] ATTALLAH O. Skin cancer classification leveraging multi-directional compact convolutional neural network ensembles and Gabor wavelets[J]. Scientific Reports, 14, 20637(2024).

    [27] CHEN Z, WU B Y, QIU C Y et al. Automatic velocity spectrum picking method for convolutional neural networks based on time-weighted loss function and attention mechanism[C], 14, 20637(2024).

         陈柱, 吴帮玉, 邱辰禹. 基于时间权重损失函数与注意力机制的卷积神经网络速度谱自动拾取方法[C], 1042-1045(2021).

    [28] CHEN H Z, XU L L, AI W et al. Kernel functions embedded in support vector machine learning models for rapid water pollution assessment via near-infrared spectroscopy[J]. Science of the Total Environment, 714, 136765(2020).

    Tools

    Get Citation

    Copy Citation Text

    Zancheng JIANG, Ruijie WANG, Xiaoliang XU, Binqiang YE, Peng FENG. Research on water identification and rapid analysis algorithm for components based on 3d fluorescence spectroscopy[J]. Optics and Precision Engineering, 2025, 33(10): 1627

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 31, 2024

    Accepted: --

    Published Online: Jul. 23, 2025

    The Author Email: Binqiang YE (coe-fp@cqu.edu.cn)

    DOI:10.37188/OPE.20253310.1627

    Topics