Journal of Synthetic Crystals, Volume. 52, Issue 4, 688(2023)
Preparation of BaTiO3 Thin Film and Its Application in Electro-Optic Modulator
[1] [1] REIS J D, SHUKLA V, STAUFFER D R, et al. Technology options for 400G implementation[C]//Optical Networking Forum (OIF), OIF-Tech-Options-400G-01.0, 2015.
[2] [2] DOUGHERTY G, MARGAN P. OCLARO. Photothermal switching with light absorbers for silicon-based devices[C]//The 29th annual ROTH conference presentations, 2017.
[5] [5] KIM I D, AVRAHAMI Y, SOCCI L, et al. Ridge waveguide using highly oriented BaTiO3 thin films for electro-optic application[J]. Journal of Asian Ceramic Societies, 2014, 2(3): 231-234.
[6] [6] LIN W J, TSENG T Y, LU H B, et al. Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition[J]. Journal of Applied Physics, 1995, 77(12): 6466-6471.
[7] [7] CAI W, FAN Y Z, GAO J C, et al. Microstructure, dielectric properties and diffuse phase transition of barium stannate titanate ceramics[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(3): 265-272.
[8] [8] HWANG J, KOLODIAZHNYI T, YANG J, et al. Doping and temperature-dependent optical properties of oxygen-reduced BaTiO3-δ[J]. Physical Review B, 2010, 82(21): 214109.
[9] [9] LI Y W, LI F X. The effect of domain patterns on 180° domain switching in BaTiO3 crystals during antiparallel electric field loading[J]. Applied Physics Letters, 2014, 104(4): 042908.
[10] [10] HE D Y, XING X R, QIAO L J, et al. Temperature change effect on BaTiO3 single crystal surface potential around domain walls[J]. Applied Surface Science, 2014, 311: 837-841.
[11] [11] YANG Q, ZHANG W, YUAN M L, et al. Preparation and characterization of self-assembled percolative BaTiO3-CoFe2O4 nanocomposites via magnetron co-sputtering[J]. Science and Technology of Advanced Materials, 2014, 15(2): 025003.
[12] [12] HU Z G, WANG G S, HUANG Z M, et al. Structure-related infrared optical properties of BaTiO3 thin films grown on Pt/Ti/SiO2/Si substrates[J]. Journal of Physics and Chemistry of Solids, 2003, 64(12): 2445-2450.
[13] [13] ZHANG W, HU F R, ZHANG H, et al. Investigation of the electrical properties of RF sputtered BaTiO3 films grown on various substrates[J]. Materials Research Bulletin, 2017, 95: 23-29.
[14] [14] ZHANG W, HU F R. Effects of substrate-controlled-orientation on the electrical performance of sputtered BaTiO3 thin films[J]. Journal of Vacuum Science & Technology B, 2020, 38(1): 012208.
[16] [16] ZHAO Y Y, OUYANG J. Columnar nanograined BaTiO3 ferroelectric thin films integrated on Si with a sizable dielectric tunability[J]. Journal of Inorganic Materials, 2022, 37(6): 596.
[18] [18] WEI X, HUANG W, JIE W, et al. Orientation growth of BaTiO3 ferroelectric films on the substrates of silicon[J]. Journal of the Chinese Ceramic Society, 2007, 35(5): 583-587.
[21] [21] KORMONDY K J, POPOFF Y, SOUSA M, et al. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics[J]. Nanotechnology, 2017, 28(7): 075706.
[22] [22] TANG P S, TOWNER D J, HAMANO T, et al. Electrooptic modulation up to 40 GHz in a Barium titanate thin film waveguide modulator[J]. Optics Express, 2004, 12(24): 5962-5967.
[23] [23] TANG P S, MEIER A L, TOWNER D J, et al. BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 μm[J]. Optics Letters, 2005, 30(3): 254-256.
[24] [24] ELTES F, MAI C, CAIMI D, et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform[J]. Journal of Lightwave Technology, 2019, 37(5): 1456-1462.
[25] [25] KORMONDY K J, ABEL S, FALLEGGER F, et al. Analysis of the Pockels effect in ferroelectric barium titanate thin films on Si(001)[J]. Microelectronic Engineering, 2015, 147: 215-218.
[26] [26] XIONG C, PERNICE W H P, NGAI J H, et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices[J]. Nano Letters, 2014, 14(3): 1419-1425.
[27] [27] CASTERA P, GUTIERREZ A M, TULLI D, et al. Electro-optical modulation based on pockels effect in BaTiO3 with a multi-domain structure[J]. IEEE Photonics Technology Letters, 2016, 28(9): 990-993.
[28] [28] POSADAS A B, PARK H, REYNAUD M, et al. Thick BaTiO3 epitaxial films integrated on Si by RF sputtering for electro-optic modulators in Si photonics[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51230-51244.
[29] [29] LIU X, WU C, ZHANG P. Comparison of two-step growth and direct growth for GaAs on Si[J]. Semiconductor Optoelectronics,2002, 23(2):128-131.
[30] [30] TOWNER D, NI J, MARKS T, et al. Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films[J]. Journal of Crystal Growth, 2003, 255(1): 107-113.
[31] [31] TEREN A R, BELOT J A, EDLEMAN N L, et al. MOCVD of epitaxial BaTiO3 films using a liquid Barium precursor[J]. Chemical Vapor Deposition, 2000, 6(4): 175-177.
[32] [32] QIU J H, DING J N, YUAN N Y, et al. Film thickness dependence of electro-optic effect in epitaxial BaTiO3 thin films[J]. Solid State Communications, 2011, 151(19): 1344-1348.
[33] [33] SHUSTER G, KREININ O, LAKIN E, et al. MOCVD growth of barium-strontium titanate films using newly developed barium and strontium precursors[J]. Thin Solid Films, 2010, 518(16): 4658-4661.
[34] [34] REINKE M, KUZMINYKH Y, HOFFMANN P. Combinatorial HV-CVD survey of barium triisopropyl cyclopentadienyl and titanium tetraisopropoxide for the deposition of BaTiO3[J]. Physica Status Solidi (a), 2015, 212(7): 1556-1562.
[35] [35] REINKE M, KUZMINYKH Y, ELTES F, et al. Low temperature epitaxial barium titanate thin film growth in high vacuum CVD[J]. Advanced Materials Interfaces, 2017, 4(18): 1700116.
[36] [36] PETRARU A, SCHUBERT J, SCHMID M, et al. Ferroelectric BaTiO3 thin-film optical waveguide modulators[J]. Applied Physics Letters, 2002, 81(8): 1375-1377.
[37] [37] PETRARU A, SCHUBERT J, SCHMID M, et al. Integrated optical Mach Zehnder modulator based on polycrystalline BaTiO3[J]. Optics Letters, 2003, 28(24): 2527-2529.
[38] [38] VAKULOV Z, KORZUN K, TOMINOV R V, et al. Formation of nanocrystalline BaTiO3 thin films by pulsed laser deposition[C]//Proc SPIE 12157, International Conference on Micro- and Nano-Electronics 2021, 2022, 12157: 413-419.
[39] [39] LYU J K, FINA I, SOLANAS R, et al. Tailoring lattice strain and ferroelectric polarization of epitaxial BaTiO3 thin films on Si(001)[J]. Scientific Reports, 2018, 8(1): 1-10.
[40] [40] BEHERA S, KHARE A. Influence of substrate temperature and oxygen pressure on the structural and optical properties of polycrystalline BaTiO3 thin films grown by PLD[J]. Materials Science in Semiconductor Processing, 2022, 140: 106379.
[41] [41] HSU M H M, MARINELLI A, MERCKLING C, et al. Orientation-dependent electro-optical response of BaTiO3 on SrTiO3-buffered Si(001) studied via spectroscopic ellipsometry[J]. Optical Materials Express, 2017, 7(6): 2030-2039.
[42] [42] HILTUNEN J, SENEVIRATNE D, SUN R, et al. Optical properties of BaTiO3 thin films: influence of oxygen pressure utilized during pulsed laser deposition[J]. Journal of Electroceramics, 2009, 22(4): 416-420.
[43] [43] ESTRADA F R, DE MORAES L G M, VITAL F L A, et al. Island growth mode in pulsed laser deposited ferroelectric BaTiO3 thin films: the role of oxygen pressure during deposition[J]. Ferroelectrics, 2019, 545(1): 39-44.
[44] [44] LYU J K, ESTANDA S, GAZQUEZ J, et al. Control of polar orientation and lattice strain in epitaxial BaTiO3 films on silicon[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25529-25535.
[45] [45] WANG T H, HSU P C, KORYTOV M, et al. Polarization control of epitaxial barium titanate (BaTiO3) grown by pulsed-laser deposition on a MBE-SrTiO3/Si(001) pseudo-substrate[J]. Journal of Applied Physics, 2020, 128(10): 104104.
[48] [48] ZHANG W, YUAN M L, WANG X Y, et al. Highly C-axis oriented Barium titanate ferroelectric films deposited on SrTiO3 substrate using an off-axis sputtered conductive oxide layer as bottom electrode[J]. Advanced Materials Research, 2011, 399/400/401: 926-929.
[49] [49] SHIH W C, LIANG Y S, WU M S. Preparation of BaTiO3 Films on Si substrate with MgO buffer layer by RF magnetron sputtering[J]. Japanese Journal of Applied Physics, 2008, 47(9): 7475-7479.
[50] [50] WANG L Q, KANG H M, LI K Y, et al. Phase evolution of BaTiO3 nanoparticles: an identification of BaTi2O5 intermediate phase in calcined stearic acid gel[J]. The Journal of Physical Chemistry C, 2008, 112(7): 2382-2388.
[51] [51] LI W, XU Z J, CHU R Q, et al. Structure and electrical properties of BaTiO3 prepared by sol-gel process[J]. Journal of Alloys and Compounds, 2009, 482(1/2): 137-140.
[52] [52] WANG W W, CAO L X, LIU W, et al. Low-temperature synthesis of BaTiO3 powders by the sol-gel-hydrothermal method[J]. Ceramics International, 2013, 39(6): 7127-7134.
[53] [53] CHINCHAMALATPURE V R, GHOSH S A, CHAUDHARI G N. Synthesis and electrical characterization of BaTiO3 thin films on Si(100)[J]. Materials Sciences and Applications, 2010, 1(4): 187-190.
[54] [54] EDMONDSON B I, KWON S, LAM C H, et al. Epitaxial, electro-optically active Barium titanate thin films on silicon by chemical solution deposition[J]. Journal of the American Ceramic Society, 2020, 103(2): 1209-1218.
[55] [55] EDMONDSON B I, KWON S, ORTMANN J E, et al. Composition and annealing effects on the linear electro-optic response of solution-deposited Barium strontium titanate[J]. Journal of the American Ceramic Society, 2020, 103(10): 5700-5705.
[56] [56] ABEL S. Electro-optic photonic devices based on epitaxial barium titanate thin films on silicon[D]. Grenoble: Université Grenoble Alpes Doctoral Dissertation, 2014.
[57] [57] TSURUMI T, MIYASOU T, ISHIBASHI Y, et al. Preparation and dielectric property of BaTiO3-SrTiO3 artificially modulated structures[J]. Japanese Journal of Applied Physics, 1998, 37(9S): 5104.
[58] [58] MERCKLING C, KORYTOV M, CELANO U, et al. Epitaxial growth and strain relaxation studies of BaTiO3 and BaTiO3/SrTiO3 superlattices grown by MBE on SrTiO3-buffered Si(001) substrate[J]. Journal of Vacuum Science & Technology A, 2019, 37(2): 021510.
[59] [59] IZUHARA T, GHEORMA I L, OSGOOD R M, et al. Single-crystal Barium titanate thin films by ion slicing[J]. Applied Physics Letters, 2003, 82(4): 616-618.
[60] [60] SULSER F, POBERAJ G, KOECHLIN M, et al. Photonic crystal structures in ion-sliced lithium niobate thin films[J]. Optics Express, 2009, 17(22): 20291-20300.
[63] [63] ELTES F, KROH M, CAIMI D, et al. A novel 25 Gbps electro-optic Pockels modulator integrated on an advanced Si photonic platform[C]//2017 IEEE International Electron Devices Meeting (IEDM). December 2-6, 2017, San Francisco, CA, USA. IEEE, 2018: 24.5.1-24.5.4.
[64] [64] UMMETHALA S, KEMAL J N, ALAM A S, et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines[J]. Optica, 2021, 8(4): 511-519.
[65] [65] ORTMANN J E, ELTES F, CAIMI D, et al. Ultra-low-power tuning in hybrid barium titanate-silicon nitride electro-optic devices on silicon[J]. ACS Photonics, 2019, 6(11): 2677-2684.
[66] [66] ELTES F, CAIMI D, FALLEGGER F, et al. Low-loss BaTiO3-Si waveguides for nonlinear integrated photonics[J]. ACS Photonics, 2016, 3(9): 1698-1703.
[67] [67] PERNICE W H P, XIONG C, WALKER F J, et al. Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1344-1347.
[68] [68] CASTERA P, TULLI D, GUTIERREZ A M, et al. Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon[J]. Optics Express, 2015, 23(12): 15332-15342.
[69] [69] AL-ITHAWI S, HEKMAT W A, HUBEATIR K A, et al. Characterization of bulk BaTiO3 material for optical modulator applications[J]. Materials Science Forum, 2020, 1002: 132-139.
[70] [70] ELTES F, ORTMANN J E, URBONAS D, et al. Record high pockels coefficient in PIC-compatible BaTiO3/Si photonic devices[C]//2018 European Conference on Optical Communication (ECOC). September 23-27, 2018, Rome, Italy. IEEE, 2018: 1-3.
Get Citation
Copy Citation Text
REN Yijing, MA Xinguo, ZHANG Feng, LU Jingjing, ZHANG Li, WANG Han. Preparation of BaTiO3 Thin Film and Its Application in Electro-Optic Modulator[J]. Journal of Synthetic Crystals, 2023, 52(4): 688
Category:
Received: Dec. 7, 2022
Accepted: --
Published Online: Jun. 11, 2023
The Author Email: Yijing REN (renyij1@163.com)
CSTR:32186.14.