Laser & Optoelectronics Progress, Volume. 61, Issue 13, 1300003(2024)

Research Progress in Isotope Gas Detection Techniques Based on Mass Spectrometry and Spectral Analysis

Ziyi Xu and Shuo Liu*
Author Affiliations
  • Advanced Laser Technology Research Center, School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • show less
    Figures & Tables(9)
    IRMS basic structure
    PAS basic schematic (dashed arrows indicate electrical signals, solid arrows indicate optical signals)
    TDLAS system schematic (dashed arrows indicate electrical signals, solid arrows indicate optical signals)
    CRDS optical cavity schematic
    ICOS basic schematic (dashed arrows indicate electrical signals, solid arrows indicate optical signals)
    • Table 1. Summary of research on isotope gas detection based on PAS technology

      View table

      Table 1. Summary of research on isotope gas detection based on PAS technology

      ReferenceDetection technologyTest targetApplication scenarioPerformance
      25QEPASδ13CO2Medical testing2.6 mW low power
      26QEPASδ13CH4Oil explorationSize: 30 cm×10 cm×20 cm
      27PASδ13CH4Medical testingSize: 40 cm×40 cm×25 cm
      28Cantilever beam enhanced photoacoustic spectroscopyδ14CO2In-situ radiocarbon testing10-10 CO2 ultra-low concentration
      29QEPAS-linear regression iterative analysis

      δ13CO2

      δ13CH4

      Oil explorationThree-component gas detection
      30QEPASδ13CH42×10-4‒2×10-1 CH4 high concentration
      31PASδ13CH4δ13C2H6Climate research, oil explorationStandard deviation: 6.04×10-4 and 2.8×10-5
    • Table 2. Comparison of isotope gas detection sensitivity based on CEAS technology

      View table

      Table 2. Comparison of isotope gas detection sensitivity based on CEAS technology

      ReferenceDetection technologyTest targetApplicationAverage sensitivity /(g/ml)
      70CEAS-Kalman filteringδ13CO2δ13CH4Industrial production1.05×10-3 and 2.85×10-3
      71CEASδ13CH4Environmental monitoring8×10-5
      72IBBCEASδ13CO2Medical noninvasive diagnostics1.91×10-4
      73CEASδH218Oδ2H2OEnvironmental monitoring4.3×10-4 and 3.6×10-3
      74CEAS Raman multi-gas sensingδ13CO2Ecosystem metabolism10-6
      75CEAMLAS- Fabry-Perot cavityδ13CO25.2×10-9
      76TDLAS-CEASδ13CH4Environmental monitoring±5×10-4
    • Table 3. Comparison of the sensitivity of isotope gas detection studies based on the ICOS technique

      View table

      Table 3. Comparison of the sensitivity of isotope gas detection studies based on the ICOS technique

      ReferenceDetection technologyTest targetApplicationAverage sensitivity /(g/ml)
      77ICOSδ15N2OδN218OδN217OEnvironmental monitoring±4×10-4, ±9×10-4, and ±9×10-4
      78WM-OA-ICOSδ13CO2δC18O2Ecological research1.7×10-4 and 2×10-4
    • Table 4. Characteristics of isotope gas detection technology

      View table

      Table 4. Characteristics of isotope gas detection technology

      Detection technologyAccurateStabilitySizeCostOperation
      Mass spectrometryExcellentPoorPoorPoorPoor
      PASGoodPoorGoodGoodGood
      TDLASGoodGoodGoodGoodGood
      CRDSExcellentFairGoodPoorPoor
      CEAS/ICOSExcellentFairGoodPoorPoor
    Tools

    Get Citation

    Copy Citation Text

    Ziyi Xu, Shuo Liu. Research Progress in Isotope Gas Detection Techniques Based on Mass Spectrometry and Spectral Analysis[J]. Laser & Optoelectronics Progress, 2024, 61(13): 1300003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 4, 2023

    Accepted: Sep. 18, 2023

    Published Online: Jul. 17, 2024

    The Author Email: Shuo Liu (liushuo@hebut.edu.cn)

    DOI:10.3788/LOP231848

    CSTR:32186.14.LOP231848

    Topics