Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0114003(2024)

Research Progress in Narrow Linewidth Laser Technology (Invited)

Tao Zhu*, Da Wei, Leilei Shi, Ligang Huang, Jiali Li, and Minzhi Xu
Author Affiliations
  • Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, Chongqing University,Chongqing 400044, China
  • show less
    References(218)

    [1] Einstein A. On the quantum mechanics of radiation[J]. Physikalische Zeitschrift, 18, 121-128(1917).

    [2] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [3] Maiman T H. Optical and microwave-optical experiments in ruby[J]. Physical Review Letters, 4, 564-566(1960).

    [4] Zeng X, Cui S Z, Jiang H W et al. Single-frequency upconverted laser generation by phase summation[J]. High Power Laser Science and Engineering, 11, e18(2023).

    [5] Wang G J, Song J X, Chen Y S et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 10, e22(2022).

    [6] Legero T, Matei D G, Häfner S et al. 1.5 μm lasers with sub 10 mHz linewidth[C](2017).

    [7] Song W L. The development of laser processing technology[J]. Laser & Infrared, 36, 755-758(2006).

    [8] Murray K K, Seneviratne C A, Ghorai S. High resolution laser mass spectrometry bioimaging[J]. Methods, 104, 118-126(2016).

    [9] Predehl K, Grosche G, Raupach S M F et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 336, 441-444(2012).

    [10] Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [11] Marcu A, Stafe M, Barbuta M et al. Photon energy transfer on titanium targets for laser thrusters[J]. High Power Laser Science and Engineering, 10, e27(2022).

    [12] Wang R F, Zhang Y P, Xu Z Y. Present situation and developing trend of application of laser technique to military[J]. Infrared and Laser Engineering, 36, 308-311(2007).

    [13] Gordon J P, Zeiger H J, Townes C H. The maser: new type of microwave amplifier, frequency standard, and spectrometer[J]. Physical Review, 99, 1264-1274(1955).

    [14] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 112, 1940-1949(1958).

    [15] Henry C. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 18, 259-264(1982).

    [16] Xie S Y, Bo Y, Xu J L et al. A high power single frequency diode side-pumped Nd: YAG ring laser[J]. Chinese Physics Letters, 28, 084207(2011).

    [17] Wei Y X, Peng W N, Li J W et al. Self-mode-matching compact low-noise all-solid-state continuous wave single-frequency laser with output power of 140 W[J]. Optics Letters, 48, 676-679(2023).

    [18] Jeong Y D, Won Y H, Choi S C et al. Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics[J]. Optics Letters, 31, 2586-2588(2006).

    [19] He L N, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).

    [20] Ball G A, Glenn W H. Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors[J]. Journal of Lightwave Technology, 10, 1338-1343(1992).

    [21] Lu B L, Yuan L M, Qi X Y et al. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser[J]. Chinese Optics Letters, 14, 071404(2016).

    [22] Huang J Q, Wen J X, Wan Y et al. Sub-kHz-linewidth continuous-wave single-frequency ring-cavity fiber laser based on high-gain Er: YAG crystal-derived silica fiber[J]. Optics Express, 31, 5951-5962(2023).

    [23] Saito S, Nilsson O, Yamamoto Y. Oscillation center frequency tuning, quantum FM noise, and direct frequency characteristics in external grating loaded semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 18, 961-970(1982).

    [24] Kleinman D A, Kisliuk P P. Discrimination against unwanted orders in the Fabry-Perot resonator[J]. Bell System Technical Journal, 41, 453-462(1962).

    [25] Lang X K, Jia P, Chen Y Y et al. Advances in narrow linewidth diode lasers[J]. Science China Information Sciences, 62, 61401(2019).

    [26] Dang L Y, Huang L G, Li Y J et al. A longitude-purification mechanism for tunable fiber laser based on distributed feedback[J]. Journal of Lightwave Technology, 40, 206-214(2022).

    [27] Ma W C, Xiong B, Sun C Z et al. Linewidth narrowing of mutually injection locked semiconductor lasers with short and long delay[J]. Applied Sciences, 9, 1436(2019).

    [28] Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012).

    [29] Spirin V V, Bueno Escobedo J L, Korobko D A et al. Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator[J]. Optics Express, 28, 478-484(2020).

    [30] Harayama T, Shinohara S. Two-dimensional microcavity lasers[J]. Laser & Photonics Reviews, 5, 247-271(2011).

    [31] Kotik J, Newstein M C. Theory of LASER oscillations in fabry-perot resonators[J]. Journal of Applied Physics, 32, 178-186(1961).

    [32] Lee T P, Burrus C A, Wilt D P. Spectral linewidth of a variable-gap cleaved-coupled-cavity laser[C], TUP3(1985).

    [33] Gruet F, Bandi T, Mileti G et al. Development and spectral characterisation of discrete mode laser diodes (DMLDs) emitting at 780 nm for Rubidium atomic clocks[C](2011).

    [34] O’Carroll J, Phelan R, Kelly B et al. Wide temperature range 0. Optics Express, 19, B90-B95(2011).

    [35] Zou L, Wang L, Yu T T et al. Wavelength tunable laser based on distributed reflectors with deep submicron slots[J]. Proceedings of SPIE, 8412, 84120O(2012).

    [36] Wang Y, Yang Y G, Zhang S et al. Narrow linewidth single-mode slotted fabry-Pérot laser using deep etched trenches[J]. IEEE Photonics Technology Letters, 24, 1233-1235(2012).

    [37] Yao Z H, Chen H M, Zhang Z Y. O-band single longitudinal mode fabry-Pérot laser based on double slanted slots structure[J]. Chinese Journal of Luminescence, 42, 1804-1809(2021).

    [38] Li X, Zhu Z S, Xi Y P et al. Single-mode Fabry-Perot laser with deeply etched slanted double trenches[J]. Applied Physics Letters, 107, 091108(2015).

    [39] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 3, 1182-1186(1964).

    [40] Ball G A, Morey W W, Glenn W H. Standing-wave monomode erbium fiber laser[J]. IEEE Photonics Technology Letters, 3, 613-615(1991).

    [41] Mo S P, Huang X, Xu S H et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 39, 5818-5821(2014).

    [42] Sabert H, Ulrich R. Gain stabilization in a narrow-band optical filter[J]. Optics Letters, 17, 1161-1163(1992).

    [43] Takushima Y, Yamashita S, Kikuchi K et al. Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon[J]. IEEE Photonics Technology Letters, 8, 1468-1470(1996).

    [44] Guo Y Y, Wang D J, Liu F L et al. A novel single-mode, linearly polarized, erbium-doped fiber laser with a stabilized frequency[C](2014).

    [45] Evtuhov V, Siegman A E. A “twisted-mode” technique for obtaining axially uniform energy density in a laser cavity[J]. Applied Optics, 4, 142-143(1965).

    [46] Tang C L, Statz H, de Mars G. Regular spiking and single-mode operation of ruby laser[J]. Applied Physics Letters, 2, 222-224(1963).

    [47] Feng S J, Mao Q H, Tian Y Y et al. Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity[J]. IEEE Photonics Technology Letters, 25, 323-326(2013).

    [48] Suzuki A, Takahashi Y, Yoshida M et al. An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration[J]. IEEE Photonics Technology Letters, 19, 1463-1465(2007).

    [49] Cheng X P, Shum P, Tse C H et al. Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon[J]. IEEE Photonics Technology Letters, 20, 976-978(2008).

    [50] Bai Y, Yan F P, Feng T et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF[J]. Chinese Journal of Lasers, 46, 0101003(2019).

    [51] Kieu K, Mansuripur M. Fiber laser using a microsphere resonator as a feedback element[J]. Optics Letters, 32, 244-246(2007).

    [52] Sulaiman A, Harun S W, Ahmad H. Erbium-doped fiber laser with a microfiber coupled to silica microsphere[J]. IEEE Photonics Journal, 4, 1065-1070(2012).

    [53] Collodo M C, Sedlmeir F, Sprenger B et al. Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser[J]. Optics Express, 22, 19277-19283(2014).

    [54] Wan H D, Liu L Q, Ding Z Q et al. Single-longitudinal-mode fiber ring lasers with taper-coupled double-microsphere-cavities[J]. IEEE Photonics Technology Letters, 29, 2123-2126(2017).

    [55] Feng T, Wei D, Bi W W et al. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter[J]. Optics Express, 29, 31179-31200(2021).

    [56] Yang D D, Yan F P, Feng T et al. Stable narrow-linewidth single-longitudinal-mode thulium-doped fiber laser by exploiting double-coupler-based double-ring filter[J]. Infrared Physics & Technology, 129, 104568(2023).

    [57] Frisken S J. Transient Bragg reflection gratings in erbium-doped fiber amplifiers[J]. Optics Letters, 17, 1776-1778(1992).

    [58] Wei F F, Yang X F, Tong Z R et al. Dual-wavelength narrow-linewidth fiber laser based on F-P fiber ring filter[J]. Optik, 123, 1026-1029(2012).

    [59] Havstad S A, Fischer B, Willner A E et al. Loop-mirror filters based on saturable-gain or-absorber gratings[J]. Optics Letters, 24, 1466-1468(1999).

    [60] Shi C D, Fu S J, Shi G N et al. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices[J]. Optik, 187, 291-296(2019).

    [61] Horowitz M, Zyskind J, Daisy R et al. Narrow-linewidth, singlemode erbium-doped fibre laser with intracavity wave mixing in saturable absorber[J]. Electronics Letters, 30, 648-649(1994).

    [62] Zhou J J, Luo A P, Luo Z C et al. Dual-wavelength single-frequency fiber laser based on graphene saturable absorber[C], ATh3A.76(2014).

    [63] Chen S Q, Wang Q K, Zhao C J et al. Stable single-longitudinal-mode fiber ring laser using topological insulator-based saturable absorber[J]. Journal of Lightwave Technology, 32, 4438-4444(2014).

    [64] Park N, Dawson J W, Vahala K J et al. All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter[J]. Applied Physics Letters, 59, 2369-2371(1991).

    [65] Ashkin A, Dziedzic J M. Observation of resonances in the radiation pressure on dielectric spheres[J]. Physical Review Letters, 38, 1351-1354(1977).

    [66] Tzeng H M, Wall K F, Long M B et al. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances[J]. Optics Letters, 9, 499-501(1984).

    [67] Min B, Kim S, Okamoto K et al. Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers[J]. Applied Physics Letters, 89, 191124(2006).

    [68] Kippenberg T J, Kalkman J, Polman A et al. Demonstration of an erbium-doped microdisk laser on a silicon chip[J]. Physical Review A, 74, 051802(2006).

    [69] Van Campenhout J, Rojo Romeo P, Regreny P et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit[J]. Optics Express, 15, 6744-6749(2007).

    [70] Reitzenstein S, Heindel T, Kistner C et al. Low threshold electrically pumped quantum dot-micropillar lasers[J]. Applied Physics Letters, 93, 061104(2008).

    [71] Grossmann T, Hauser M, Beck T et al. High-Q conical polymeric microcavities[J]. Applied Physics Letters, 96, 013303(2010).

    [72] Yang L, Vahala K J. Gain functionalization of silica microresonators[J]. Optics Letters, 28, 592-594(2003).

    [73] Grossmann T, Schleede S, Hauser M et al. Direct laser writing for active and passive high-Q polymer microdisks on silicon[J]. Optics Express, 19, 11451-11456(2011).

    [74] Lacey S, White I M, Sun Y Z et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold[J]. Optics Express, 15, 15523-15530(2007).

    [75] Chiasera A, Dumeige Y, Féron P et al. Spherical whispering-gallery-mode microresonators[J]. Laser & Photonics Reviews, 4, 457-482(2010).

    [76] Ward J, Benson O. WGM microresonators: sensing, lasing and fundamental optics with microspheres[J]. Laser & Photonics Reviews, 5, 553-570(2011).

    [77] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 137, 393-397(1989).

    [78] Lissillour F, Messager D, Stéphan G et al. Whispering-gallery-mode laser at 1.56  μm excited by a fiber taper[J]. Optics Letters, 26, 1051-1053(2001).

    [79] Lin G, Tillement O, Candela Y et al. Ultra-low threshold lasing in silica whispering-gallery-mode microcavities with Nd3+∶Gd2O3 nanocrystals[J]. Proceedings of SPIE, 7716, 771622(2010).

    [80] Kalkman J, Polman A, Kippenberg T J et al. Erbium-implanted silica microsphere laser[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 242, 182-185(2006).

    [81] McCall S L, Levi A F J, Slusher R E et al. Whispering-gallery mode microdisk lasers[J]. Applied Physics Letters, 60, 289-291(1992).

    [82] Tamboli A C, Haberer E D, Sharma R et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks[J]. Nature Photonics, 1, 61-64(2007).

    [83] Yu H M, Su X Q, Pan Y et al. Narrow linewidth CsPbBr3 perovskite quantum dots microsphere lasers[J]. Optical Materials, 133, 112907(2022).

    [84] Staudinger P, Mauthe S, Triviño N V et al. Wurtzite InP microdisks: from epitaxy to room-temperature lasing[J]. Nanotechnology, 32, 075605(2021).

    [85] Wong W W, Su Z C, Wang N Y et al. Epitaxially grown InP micro-ring lasers[J]. Nano Letters, 21, 5681-5688(2021).

    [86] Grossmann T, Schleede S, Hauser M et al. Low-threshold conical microcavity dye lasers[J]. Applied Physics Letters, 97, 063304(2010).

    [87] Klinkhammer S, Grossmann T, Lüll K et al. Diode-pumped organic semiconductor microcone laser[J]. IEEE Photonics Technology Letters, 23, 489-491(2011).

    [88] Savchenkov A A, Ilchenko V S, Matsko A B et al. Kilohertz optical resonances in dielectric crystal cavities[J]. Physical Review A, 70, 051804(2004).

    [89] Grudinin I S, Matsko A B, Savchenkov A A et al. Ultra high Q crystalline microcavities[J]. Optics Communications, 265, 33-38(2006).

    [90] Lin J T, Farajollahi S, Fang Z W et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 4, 036001(2022).

    [91] Kane T J, Byer R L. Monolithic, unidirectional single-mode Nd∶YAG ring laser[J]. Optics Letters, 10, 65-67(1985).

    [92] Kwee P, Bogan C, Danzmann K et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO[J]. Optics Express, 20, 10617-10634(2012).

    [93] Numata K, Yu A W, Camp J B et al. Laser system development for gravitational-wave interferometry in space[J]. Proceedings of SPIE, 10511, 105111D(2018).

    [94] Zang E J, Cao J P, Li C Y. Study on semi-non-planar monolithic solid-state ring laser[J]. China Inspection Body & Laboratory, 12, 19-22(2004).

    [95] Yao B Q, Duan X M, Fang D et al. 7.3 W of single-frequency output power at 2.09 μm from an Ho∶YAG monolithic nonplanar ring laser[J]. Optics Letters, 33, 2161-2163(2008).

    [96] Wang Y X, Qiu Q, Liang X et al. Narrow linewidth low noise tunable nonplanar ring lasers[J]. Infrared and Laser Engineering, 42, 595-598(2013).

    [97] Lin G P, Cao Y Q, Lu Z H et al. Spontaneous generation of orbital angular momentum crystals using a monolithic Nd∶YAG nonplanar ring laser[J]. Optics Letters, 44, 203-206(2019).

    [98] Cao Y Q, Liu P, Hou C F et al. Transverse patterns and dual-frequency lasing in a low-noise nonplanar-ring orbital-angular-momentum oscillator[J]. Physical Review Applied, 13, 024067(2020).

    [99] Streifer W, Burnham R, Scifres D. Effect of external reflectors on longitudinal modes of distributed feedback lasers[J]. IEEE Journal of Quantum Electronics, 11, 154-161(1975).

    [100] Shin D K, Henson B M, Khakimov R I et al. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0-1.1 µm[J]. Optics Express, 24, 27403-27414(2016).

    [101] Spiessberger S, Schiemangk M, Wicht A et al. Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm[J]. Journal of Lightwave Technology, 28, 2611-2616(2010).

    [102] Cayron C, Tran M, Robert Y et al. Very narrow linewidth of high power DFB laser diode for Cs pumping[C](2011).

    [103] Hou L P, Haji M, Akbar J et al. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier[J]. Optics Letters, 37, 4525-4527(2012).

    [104] Spießberger S, Schiemangk M, Wicht A et al. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz[J]. Applied Physics B, 104, 813-818(2011).

    [105] Matthey R, Gruet F, Affolderbach C et al. Development and spectral characterisation of ridge DFB laser diodes for Cs optical pumping at 894 nm[C](2016).

    [106] Wenzel S, Brox O, Casa P D et al. Ultra-narrow linewidth GaAs-based DBR lasers[C], ATh4G.3(2021).

    [107] Coleman J J, Dias N L, Reddy U. Narrow spectral linewidth surface grating DBR diode lasers[C], 173-174(2012).

    [108] Belt M, Huffman T, Davenport M L et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform[J]. Optics Letters, 38, 4825-4828(2013).

    [109] Paschke K, Pohl J, Feise D et al. Properties of 62x nm red-emitting single-mode diode lasers[J]. Proceedings of SPIE, 9002, 90020A(2014).

    [110] Dumitrescu M, Telkkala J, Karinen J et al. Narrow linewidth 894 nm distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings fabricated using nanoimprint lithography[C], 131-141(2010).

    [111] Virtanen H, Uusitalo T, Karjalainen M et al. Narrow-linewidth 780-nm DFB lasers fabricated using nanoimprint lithography[J]. IEEE Photonics Technology Letters, 30, 51-54(2018).

    [112] Huang D N, Tran M A, Guo J et al. Sub-kHz linewidth Extended-DBR lasers heterogeneously integrated on silicon[C], W4E.4(2019).

    [113] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [114] Kogelnik H, Shank C V. Stimulated emission in a periodic structure[J]. Applied Physics Letters, 18, 152-154(1971).

    [115] Jauncey I M, Reekie L, Townsend J E et al. Single-longitudinal-mode operation of an Nd3+-doped fibre laser[J]. Electronics Letters, 24, 24-26(1988).

    [116] Nagel S, MacChesney J, Walker K. An overview of the modified chemical vapor deposition (MCVD) process and performance[J]. IEEE Journal of Quantum Electronics, 18, 459-476(1982).

    [117] Barnini A, Robin T, Cadier B et al. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process[J]. Proceedings of SPIE, 10100, 101000D(2017).

    [118] Alexandre B, Kilian Le C, Louanne K et al. Low numerical aperature large-mode-area neodymium-doped fibers fabricated by SPCVD and ASD for laser operation near 920 nm[J]. Proceedings of SPIE, 11276, 112760L(2020).

    [119] Xia L S, Wang M, Kuan P W et al. Paving way for fabrication of silica-based single-frequency seed laser: Ultrahighly Yb-doped optical fibers via sol-gel method combined with silica tube inner wall coating and fusion-tapering technique[J]. Optics & Laser Technology, 131, 106425(2020).

    [120] Fang Q, Xu Y, Fu S J et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930  nm[J]. Optics Letters, 41, 1829-1832(2016).

    [121] Wang Y F, Wu J M, Zhao Q L et al. Single-frequency DBR Nd-doped fiber laser at 1120  nm with a narrow linewidth and low threshold[J]. Optics Letters, 45, 2263-2266(2020).

    [122] Pan Z Q, Cai H W, Meng L et al. Single-frequency phosphate glass fiber laser with 100-mW output power at 1535 nm and its polarization characteristics[J]. Chinese Optics Letters, 8, 52-54(2010).

    [123] Zhu X S, Zong J E, Miller A et al. Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm[J]. Optics Letters, 37, 4185-4187(2012).

    [124] Xu S H, Yang Z M, Liu T et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 18, 1249-1254(2010).

    [125] Liu Z J, Xie Y Y, Cong Z H et al. 110 mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064 nm[J]. Optics Letters, 44, 4307-4310(2019).

    [126] Wan Y, Wen J X, Jiang C et al. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber[J]. Photonics Research, 9, 649-656(2021).

    [127] Cen X, Guan X C, Yang C S et al. Short-wavelength, in-band-pumped single- frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm[J]. IEEE Photonics Technology Letters, 33, 350-353(2021).

    [128] Nakamura M, Yariv A, Yen H W et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 22, 515-516(1973).

    [129] Hai Y N, Zou Y G, Ma X H et al. Narrow-linewidth surface-emitting distributed feedback semiconductor lasers with low threshold current[J]. Optics & Laser Technology, 135, 106631(2021).

    [130] Li Q, Yan F P, Peng W J et al. DFB laser based on single mode large effective area heavy concentration EDF[J]. Optics Express, 20, 23684-23689(2012).

    [131] Bernier M, Michaud-Belleau V, Levasseur S et al. All-fiber DFB laser operating at 2.8  μm[J]. Optics Letters, 40, 81-84(2014).

    [132] Kringlebotn J T, Archambault J L, Reekie L et al. Er3+∶Yb3+-codoped fiber distributed-feedback laser[J]. Optics Letters, 19, 2101-2103(1994).

    [133] Walasik W, Traoré D, Amavigan A et al. 2-μm narrow linewidth all-fiber DFB fiber Bragg grating lasers for Ho- and Tm-doped fiber-amplifier applications[J]. Journal of Lightwave Technology, 39, 5096-5102(2021).

    [134] Ball G A, Morey W W. Continuously tunable single-mode erbium fiber laser[J]. Optics Letters, 17, 420-422(1992).

    [135] Tao Y, Zhang S, Jiang M et al. High power and high efficiency single-frequency 1030 nm DFB fiber laser[J]. Optics & Laser Technology, 145, 107519(2022).

    [136] Li B, Gao J, Yu A L et al. 500 mW tunable external cavity diode laser with narrow line-width emission in blue-violet region[J]. Optics & Laser Technology, 96, 176-179(2017).

    [137] Bayrakli I. Investigation of double-mode operation and fast fine tuning properties of a grating-coupled external cavity diode laser configuration[J]. Optics & Laser Technology, 87, 7-10(2017).

    [138] Ding D, Lü X Q, Chen X Y et al. Tunable high-power blue external cavity semiconductor laser[J]. Optics & Laser Technology, 94, 1-5(2017).

    [139] Chen D J, Fang Z J, Cai H W et al. Polarization characteristics of an external cavity diode laser with littman-metcalf configuration[J]. IEEE Photonics Technology Letters, 21, 984-986(2009).

    [140] Wang Y, Zhou Y L, Wu H et al. A tunable external cavity laser operating at excited states of bimodal-sized quantum-dot[J]. Japanese Journal of Applied Physics, 58, 051013(2019).

    [141] Podoskin A, Golovin V, Gavrina P et al. Ultrabroad tuning range (100 nm) of external-cavity continuous-wave high-power semiconductor lasers based on a single InGaAs quantum well[J]. Applied Optics, 58, 9089-9093(2019).

    [142] Shirazi M F, Kim P, Jeon M et al. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement[J]. Optics & Laser Technology, 101, 462-467(2018).

    [143] Kapasi D P, Eichholz J, McRae T et al. Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research[J]. Optics Express, 28, 3280-3288(2020).

    [144] Hard T M. Laser wavelength selection and output coupling by a grating[J]. Applied Optics, 9, 1825-1830(1970).

    [145] Wang Y, Luo S, Ji H M et al. Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition[J]. Chinese Physics B, 30, 018106(2021).

    [146] Jiang Y F, Vijayraghavan K, Jung S et al. External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2‒5.9 THz tuning range[J]. Journal of Optics, 16, 094002(2014).

    [147] Ojanen S P, Viheriälä J, Cherchi M et al. GaSb diode lasers tunable around 2.6 μm using silicon photonics resonators or external diffractive gratings[J]. Applied Physics Letters, 116, 081105(2020).

    [148] Zhang X M, Wang N, Gao L et al. Narrow-linewidth external-cavity tunable lasers[C], 1-3(2011).

    [149] Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback[J]. Optics Letters, 12, 876-878(1987).

    [150] Gambell A, Simakov N, Ganija M et al. Intra-cavity semiconductor laser tuning using a frequency compensating acousto-optic tunable filter pair[J]. Proceedings of SPIE, 11200, 1120027(2019).

    [151] Ménager L, Cabaret L, Lorgeré I et al. Diode laser extended cavity for broad-range fast ramping[J]. Optics Letters, 25, 1246-1248(2000).

    [152] Pan G Z, Guan B L, Xu C et al. Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz[J]. Chinese Physics B, 27, 014204(2018).

    [153] Zhao Y J, Wang Q P, Chang J et al. Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking[J]. Laser Physics, 21, 2108-2111(2011).

    [154] Zhao Y J, Wang Q P, Chang J et al. Suppression of the intensity noise in distributed feedback fiber lasers by self-injection locking[J]. Laser Physics Letters, 9, 739-743(2012).

    [155] Hao L Y, Wang X H, Jia K P et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics[J]. Optics Letters, 46, 3769-3772(2021).

    [156] Zhang L, Wei F, Sun G W et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 29, 385-388(2017).

    [157] Wang Z K, Shang J M, Xu Y F et al. Stable narrow-linewidth single-longitudinal mode laser by exploiting double subring resonator and self-injection loop[J]. Optical Fiber Technology, 68, 102775(2022).

    [158] Congar A, Gay M, Perin G et al. Narrow linewidth near-UV InGaN laser diode based on external cavity fiber Bragg grating[J]. Optics Letters, 46, 1077-1080(2021).

    [159] Zhang Y N, Zhang Y F, Zhao Q L et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser[J]. Optics Express, 24, 26209-26214(2016).

    [160] Zhao Q L, Zhang Z T, Wu B et al. Noise-sidebands-free and ultra-low-RIN 1.5  μm single-frequency fiber laser towards coherent optical detection[J]. Photonics Research, 6, 326-331(2018).

    [161] Wei F, Yang F, Zhang X et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity[J]. Optics Express, 24, 17406-17415(2016).

    [162] Dale E, Bagheri M, Matsko A B et al. Microresonator stabilized 2 μm distributed-feedback GaSb-based diode laser[J]. Optics Letters, 41, 5559-5562(2016).

    [163] Jiang L D, Shi L L, Luo J et al. Narrow linewidth VCSEL based on resonant optical feedback from an on-chip microring add-drop filter[J]. Optics Letters, 46, 2320-2323(2021).

    [164] Jiang L D, Shi L L, Luo J et al. Simultaneous self-injection locking of two VCSELs to a single whispering-gallery-mode microcavity[J]. Optics Express, 29, 37845-37851(2021).

    [165] Ji J R, Wang H T, Ma J E et al. Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration[J]. Optics Letters, 47, 1525-1528(2022).

    [166] Lai Y H, Eliyahu D, Ganji S et al. 780 nm narrow-linewidth self-injection-locked WGM lasers[J]. Proceedings of SPIE, 11266, 112660O(2020).

    [167] Yang X, Lindberg R, Margulis W et al. Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating[J]. Optics Express, 27, 14213-14220(2019).

    [168] Shi L L, Luo J, Jiang L D et al. Narrow linewidth semiconductor multi-wavelength DFB laser array simultaneously self-injection locked to a single microring resonator[J]. Optics Letters, 48, 1974-1977(2023).

    [169] Chu T, Fujioka N, Compact Ishizaka M.. lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators[J]. Optics Express, 17, 14063-14068(2009).

    [170] Guan H, Novack A, Galfsky T et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication[J]. Optics Express, 26, 7920-7933(2018).

    [171] Zheng W H, Dong F X, Liu A J et al. Design of double-ring resonator for tunable lasers on silicon[J]. Proceedings of SPIE, 10460, 104601R(2017).

    [172] Dass D, Costas M T, Barry L P et al. 28 GBd PAM-8 transmission over a 100 nm range using an InP-Si3N4 based integrated dual tunable laser module[J]. Optics Express, 29, 16563-16571(2021).

    [173] Lin Y, Browning C, Timens R B et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system[J]. IEEE Photonics Journal, 10, 1400108(2018).

    [174] Xiang C, Morton P A, Bowers J E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating[J]. Optics Letters, 44, 3825-3828(2019).

    [175] Guo J, McLemore C A, Xiang C et al. Chip-based laser with 1-hertz integrated linewidth[J]. Science Advances, 8, eabp9006(2022).

    [176] Han Y, Zhang X, Huang F J et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser[J]. Optics Letters, 46, 5413-5416(2021).

    [177] Li M X, Chang L, Wu L et al. Integrated pockels laser[J]. Nature Communications, 13, 5344(2022).

    [178] Bayrakli I. Frequency stabilization at the sub-kilohertz level of an external cavity diode laser[J]. Applied Optics, 55, 2463-2466(2016).

    [179] Stack D T, Lee P J, Quraishi Q. Simple and efficient absorption filter for single photons from a cold atom quantum memory[J]. Optics Express, 23, 6822-6832(2015).

    [180] Pound R V. Electronic frequency stabilization of microwave oscillators[J]. Review of Scientific Instruments, 17, 490-505(1946).

    [181] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [182] Li Y, Lin Y G, Wang Q et al. An improved strontium lattice clock with 10-16 level laser frequency stabilization[J]. Chinese Optics Letters, 16, 051402(2018).

    [183] Jin L, Jiang Y Y, Yao Y et al. Laser frequency instability of 2×10-16 by stabilizing to 30-cm-long Fabry-Pérot cavities at 578 nm[J]. Optics Express, 26, 18699-18707(2018).

    [184] Jiang C H, Zhang L B, Chen L et al. Research progress of an ultra-stable laser system stabilized to a 30-cm-long cavity at NTSC[C], 87-89(2020).

    [185] Bu J Y, Jiao D D, Xu G J et al. Fast auto-relock methods for ultra-stable lasers[J]. Infrared Physics & Technology, 134, 104915(2023).

    [186] Weel M, Kumarakrishnan A. Laser-frequency stabilization using a lock-in amplifier[J]. Canadian Journal of Physics, 80, 1449-1458(2002).

    [187] Shaddock D A, Gray M B, McClelland D E. Frequency locking a laser to an optical cavity by use of spatial mode interference[J]. Optics Letters, 24, 1499-1501(1999).

    [188] Dang L Y, Huang L G, Shi L L et al. Ultra-high spectral purity laser derived from weak external distributed perturbation[J]. Opto-Electronic Advances, 6, 210149(2023).

    [189] Zheng S B. Jaynes-Cummings model with a collective atomic mode[J]. Physical Review A, 77, 045802(2008).

    [190] Romanelli A. Generalized Jaynes-Cummings model as a quantum search algorithm[J]. Physical Review A, 80, 014302(2009).

    [191] Peano V, Thorwart M. Quasienergy description of the driven Jaynes-Cummings model[J]. Physical Review B, 82, 155129(2010).

    [192] Chen Q H, Liu T, Zhang Y Y et al. Exact solutions to the Jaynes-Cummings model without the rotating-wave approximation[J]. EPL (Europhysics Letters), 96, 14003(2011).

    [193] Li F H, Lan T Y, Huang L G et al. Spectrum evolution of Rayleigh backscattering in one-dimensional waveguide[J]. Opto-Electronic Advances, 2, 190012(2019).

    [194] Zhu T, Bao X Y, Chen L et al. Experimental study on stimulated Rayleigh scattering in optical fibers[J]. Optics Express, 18, 22958-22963(2010).

    [195] Zhu T, Bao X Y, Chen L. A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering[J]. Optics Communications, 285, 1371-1374(2012).

    [196] Zhu T, Bao X Y, Chen L. A single longitudinal-mode tunable fiber ring laser based on stimulated Rayleigh scattering in a nonuniform optical fiber[J]. Journal of Lightwave Technology, 29, 1802-1807(2011).

    [197] Zhu T, Chen F Y, Huang S H et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber[J]. Laser Physics Letters, 10, 055110(2013).

    [198] Dang L Y, Huang L G, Cao Y L et al. Side mode suppression of SOA fiber hybrid laser based on distributed self-injection feedback[J]. Optics & Laser Technology, 147, 107619(2022).

    [199] Li F H, Lan T Y, Ikechukwu I P et al. Experimental study on linewidth compression based on Rayleigh backscattering in 1064 nm fiber laser[J]. Optics Communications, 430, 268-272(2019).

    [200] Zhu T, Huang S H, Shi L L et al. Rayleigh backscattering: a method to highly compress laser linewidth[J]. Chinese Science Bulletin, 59, 4631-4636(2014).

    [201] Dang L Y, Zhang C Z, Zheng B W et al. Tens of hertz ultra-narrow linewidth fiber ring laser based on external weak distributed feedback[J]. Optics Express, 30, 34575-34585(2022).

    [202] Dang L Y, Zhang C Z, Li J L et al. Spectrum extreme purification and modulation of DBR fiber laser with weak distributed feedback[J]. Journal of Lightwave Technology, 41, 5437-5444(2023).

    [203] Dang L Y, Li J L, Wei D et al. Linewidth depth narrowing and control of linear cavity fiber laser based on distributed external feedback[J]. Proceedings of SPIE, 12595, 1259506(2023).

    [204] Li Y J, Huang L G, Gao L et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring[J]. Optics Express, 26, 26896-26906(2018).

    [205] Li Y J, Dang L Y, Huang L G et al. Tunable narrow-linewidth fiber laser based on the acoustically controlled polarization conversion in dispersion compensation fiber[J]. Journal of Lightwave Technology, 40, 2971-2979(2022).

    [206] Li Y J, Dang L Y, Huang L G et al. Tuning dynamics of the acousto-optical tunable SOA fiber laser[J]. Journal of Lightwave Technology, 40, 5967-5973(2022).

    [207] Dang L Y, Zheng B W, Cao Y L et al. Tunable ultra-narrow linewidth linear-cavity fiber lasers assisted by distributed external feedback[J]. Optics & Laser Technology, 166, 109529(2023).

    [208] Jiang L D, Lan T Y, Dang L Y et al. Ultra-narrow linewidth vertical-cavity surface-emitting laser based on external-cavity weak distributed feedback[J]. Optics Express, 30, 37519-37525(2022).

    [209] Liang W, Ilchenko V S, Eliyahu D et al. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 6, 7371(2015).

    [210] Stern B, Ji X C, Dutt A et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator[J]. Optics Letters, 42, 4541-4544(2017).

    [211] Pavlov N G, Koptyaev S, Lihachev G V et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 12, 694-698(2018).

    [212] Chermoshentsev D A, Shitikov A E, Lonshakov E A et al. Dual-laser self-injection locking to an integrated microresonator[J]. Optics Express, 30, 17094-17105(2022).

    [213] Jin W, Yang Q F, Chang L et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 15, 346-353(2021).

    [214] Skvortsov M I, Wolf A A, Dostovalov A V et al. Narrow-linewidth Er-doped fiber lasers with random distributed feedback provided by artificial Rayleigh scattering[J]. Journal of Lightwave Technology, 40, 1829-1835(2021).

    [215] Skvortsov M I, Abdullina S R, Podivilov E V et al. Extreme narrowing of the distributed feedback fiber laser linewidth due to the Rayleigh backscattering in a single-mode fiber: model and experimental test[J]. Photonics, 9, 590(2022).

    [216] Feng T, Su J, Wei D et al. Effective linewidth compression of a single-longitudinal-mode fiber laser with randomly distributed high scattering centers in the fiber induced by femtosecond laser pulses[J]. Optics Express, 31, 4238-4252(2023).

    [217] Huang S H, Zhu T, Liu M et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 7, 41988(2017).

    [218] Huang S H, Zhu T, Cao Z Z et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope[J]. IEEE Photonics Technology Letters, 28, 759-762(2016).

    Tools

    Get Citation

    Copy Citation Text

    Tao Zhu, Da Wei, Leilei Shi, Ligang Huang, Jiali Li, Minzhi Xu. Research Progress in Narrow Linewidth Laser Technology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Sep. 11, 2023

    Accepted: Oct. 17, 2023

    Published Online: Jan. 29, 2024

    The Author Email: Tao Zhu (zhutao@cqu.edu.cn)

    DOI:10.3788/LOP232087

    CSTR:32186.14.LOP232087

    Topics