Journal of Quantum Optics, Volume. 29, Issue 1, 10001(2023)

Advances in Cavity Optomechanics

LIU Jun-hao1,2、*, YU Ya-fei2, WANG Jin-dong3, and ZHANG Zhi-ming2,4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(85)

    [1] [1] LEBEDEW P. Untersuchungen über die Druckkrfte des Lichtes[J]. Annalen der Physik, 1901, 311(11):433-458. DOI: 10.1002/andp.19013111102.

    [2] [2] KIPPENBERG T J, VAHALA K J. Cavity Optomechanics[J]. Optics Express, 2007, 15(25):17172-17205. DOI: 10.1364/OE.15.017172.

    [3] [3] ASPELMEYER M, MEYSTRE P, SCHWAB K. Quantum Optomechanics[J]. Physics Today, 2012, 65(7):29-35. DOI: 10.1063/PT.3.1640.

    [4] [4] MEYSTRE P. A Short Walk Through Quantum Optomechanics[J]. Annalen der Physik, 2013, 525(3):215-233. DOI: 10.1002/andp.201200226.

    [5] [5] ASPELMEYER M, KIPPENBERG T J, MARQUARDT F. Cavity Optomechanics[J]. Reviews of Modern Physics, 2014, 86(4):1391. DOI: 10.1103/RevModPhys.86.1391.

    [6] [6] XIONG H, SI L G, LV X Y, et al. Review of Cavity Optomechanics in the Weak-coupling Regime: from Linearization to Intrinsic Nonlinear Interactions[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(5):1-13. DOI: 10.1007/s11433-015-5648-9.

    [7] [7] BRAGINSKY V B, KHALILI F Y. Quantum Nondemolition Measurements: the Route from Toys to Tools[J]. Reviews of Modern Physics, 1996, 68(1):1. DOI: 10.1103/RevModPhys.68.1.

    [8] [8] DORSEL A, MCCULLEN J D, MEYSTRE P, et al. Optical Bistability and Mmirror Confinement Induced by Radiation Pressure[J]. Physical Review Letters, 1983, 51(17):1550. DOI: 10.1103/Phys RevLett.51.1550.

    [9] [9] CUTHBERTSON B D, TOBAR M E, IVANOV E N, et al. Parametric Back‐action Effects in a High‐Q Cyrogenic Sapphire Transducer[J]. Review of Scientific Instruments, 1996, 67(7):2435-2442. DOI: 10.1063/1.1147193.

    [10] [10] ASHKIN A. Trapping of Atoms by Resonance Radiation Pressure[J]. Physical Review Letters, 1978, 40(12):729. DOI: 10.1103/PhysRevLett.40.729.

    [11] [11] HNSCH T W, SCHAWLOW A L. Cooling of Gases by Laser Radiation[J]. Optics Communications, 1975, 13(1):68-69. DOI: 10.1016/0030-4018(75)90159-5.

    [12] [12] WINELAND D J, ITANO W M. Laser Cooling of Atoms[J]. Physical Review A, 1979, 20(4):1521. DOI: 10.1103/PhysRevA.20.1521.

    [13] [13] PHILLIPS W D. Nobel Lecture: Laser Cooling and Trapping of Neutral Atoms[J]. Reviews of Modern Physics, 1998, 70(3):721. DOI: 10.1103/RevModPhys.70.721.

    [14] [14] FABRE C, PINARD M, BOURZEIX S, et al. Quantum-noise Reduction Using a Cavity with a Movable Mirror[J]. Physical Review A, 1994, 49(2):1337. DOI: 10.1103/PhysRevA.49.1337.

    [15] [15] MANCINI S, TOMBESI P. Quantum Noise Reduction by Radiation Pressure[J]. Physical Review A, 1994, 49(5):4055. DOI: 10.1103/PhysRevA.49.4055.

    [16] [16] BOSE S, JACOBS K, KNIGHT P L. Preparation of Nonclassical States in Cavities with a Moving Mirror[J]. Physical Review A, 1997, 56(5):4175. DOI: 10.1103/PhysRevA.56.4175.

    [17] [17] MANCINI S, MAN’KO V I, TOMBESI P. Ponderomotive Control of Quantum Macroscopic Coherence[J]. Physical Review A, 1997, 55(4):3042. DOI: 10.1103/PhysRevA.55.3042.

    [18] [18] MANCINI S, VITALI D, TOMBESI P. Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback[J]. Physical Review Letters, 1998, 80(4):688. DOI: 10.1103/PhysRevLett.80.688.

    [19] [19] COHADON P F, HEIDMANN A, PINARD M. Cooling of a Mirror by Radiation Pressure[J]. Physical Review Letters, 1999, 83(16):3174. DOI: 10.1103/PhysRevLett.83.3174.

    [20] [20] BUONANNO A, CHEN Y. Scaling Law in Signal Recycled Laser-interferometer Gravitational-wave Detectors[J]. Physical Review D, 2003, 67(6):062002. DOI: 10.1103/PhysRevD.67.062002.

    [21] [21] MIAO H, MA Y, ZHAO C, et al. Enhancing the Bandwidth of Gravitational-wave Detectors with Unstable Optomechanical Filters[J]. Physical Review Letters, 2015, 115(21):211104. DOI: 10.1103/PhysRevLett.115.211104.

    [22] [22] VERLOT P, TAVERNARAKIS A, BRIANT T, et al. Backaction Amplification and Quantum Limits in Optomechanical Measurements[J]. Physical Review Letters, 2010, 104(13):133602. DOI: 10.1103/PhysRevLett.104.133602.

    [23] [23] BRAWLEY G A, VANNER M R, LARSEN P E, et al. Nonlinear Optomechanical Measurement of Mechanical Motion[J]. Nature Communications, 2016, 7(1):1-7. DOI: 10.1038/ncomms10988.

    [24] [24] NEVEU P, CLARKE J, VANNER M R, et al. Preparation and Verification of Two-mode Mechanical Entanglement through Pulsed Optomechanical Measurements[J]. New Journal of Physics, 2021, 23(2):023026. DOI: 10.1088/1367-2630/abe1e4.

    [25] [25] STANNIGEL K, RABL P, SRENSEN A S, et al. Optomechanical Transducers for Long-distance Quantum Communication[J]. Physical Review Letters, 2010, 105(22):220501. DOI: 10.1103/PhysRevLett.105.220501.

    [26] [26] TSUKANOV A V. Optomechanical Systems and Quantum Computing[J]. Russian Microelectronics, 2011, 40(5):333-342. DOI: 10.1134/S106373971105009X.

    [27] [27] MARINKOVIC I, WALLUCKS A, RIEDINGER R, et al. Optomechanical Bell Test[J]. Physical Review Letters, 2018, 121(22):220404. DOI: 10.1103/PhysRevLett.121.220404.

    [28] [28] FIASCHI N, HENSEN B, WALLUCKS A, et al. Optomechanical Quantum Teleportation[J]. Nature Photonics, 2021, 15(11):817-821. DOI: 10.1038/s41566-021-00866-z.

    [29] [29] LEMONDE M A, DIDIER N, CLERK A A. Enhanced Nonlinear Interactions in Quantum Optomechanics via Mechanical Amplification[J]. Nature Communications, 2016, 7(1):1-8. DOI: 10.1038/ncomms11338.

    [30] [30] YIN T S, L X Y, ZHENG L L, et al. Nonlinear Effects in Modulated Quantum Optomechanics[J]. Physical Review A, 2017, 95(5):053861. DOI: 10.1103/PhysRevA.95.053861.

    [31] [31] LOMBARDI A, SCHMIDT M K, Weller L, et al. Pulsed Molecular Optomechanics in Plasmonic Nanocavities: from Nonlinear Vibrational Instabilities to Bond-breaking[J]. Physical Review X, 2018, 8(1):011016. DOI: 10.1103/PhysRevX.8.011016.

    [32] [32] PARASO T K, KALAEE M, ZANG L, et al. Position-squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity[J]. Physical Review X, 2015, 5(4):041024. DOI: 10.1103/PhysRevX.5.041024.

    [33] [33] YU W, JIANG W C, LIN Q, et al. Cavity Optomechanical Spring Sensing of Single Molecules[J]. Nature Communications, 2016, 7(1):1-9. DOI: 10.1038/ncomms12311.

    [34] [34] BEKKER C, KALRA R, BAKER C, et al. Injection Locking of an Electro-optomechanical Device[J]. Optica, 2017, 4(10):1196-1204. DOI: 10.1364/OPTICA.4.001196.

    [35] [35] GRTNER C, MOURA J P, HAAXMAN W, et al. Integrated Optomechanical Arrays of Two High Reflectivity SiN Membranes[J]. Nano Letters, 2018, 18(11):7171-7175. DOI: 10.1021/acs.nanolett.8b03240.s001.

    [36] [36] DE LEPINAY L M, DAMSKGG E, OCKELOEN-KORPPI C F, et al. Realization of Directional Amplification in a Microwave Optomechanical Device[J]. Physical Review Applied, 2019, 11(3):034027. DOI: 10.1103/PhysRevApplied.11.034027.

    [37] [37] BROOKS D W C, BOTTER T, SCHREPPLER S, et al. Non-classical Light Generated by Quantum-noise-driven Cavity Optomechanics[J]. Nature, 2012, 488(7412):476-480. DOI: 10.1038/nature11325.

    [38] [38] XIONG H, WU Y. Fundamentals and Applications of Optomechanically Induced Transparency[J]. Applied Physics Reviews, 2018, 5(3):031305. DOI: 10. 1063/1. 5027122.

    [39] [39] MANIPATRUNI S, ROBINSON J T, LIPSON M. Optical Nonreciprocity in Optomechanical Structures[J]. Physical Review Letters, 2009, 102(21):213903. DOI: 10.1103/PhysRevLett.102.213903.

    [40] [40] XIONG H, SI L G, L X Y, et al. Carrier-envelope Phase-dependent Effect of High-order Sideband Generation in Ultrafast Driven Optomechanical System[J]. Optics Letters, 2013, 38(3):353-355. DOI: 10.1364/ol.38.000353.

    [41] [41] VITALI D, GIGAN S, FERREIRA A, et al. Optomechanical Entanglement Between a Movable Mirror and a Cavity Field[J]. Physical Review Letters, 2007, 98(3):030405. DOI: 10.1103/PhysRevLett.98.030405.

    [42] [42] HE Q Y, REID M D. Einstein-Podolsky-Rosen Paradox and Quantum Steering in Pulsed Optomechanics[J]. Physical Review A, 2013, 88(5):052121. DOI: 10.1103/PhysRevA.88.052121.

    [43] [43] LIU Y C, HU Y W, WONG C W, et al. Review of Cavity Optomechanical Cooling[J]. Chinese Physics B, 2013, 22(11):114213. DOI: 10.1088/1674-1056/22/11/114213.

    [44] [44] NATION P D. Nonclassical Mechanical States in an Optomechanical Micromaser Analog[J]. Physical Review A, 2013, 88(5):053828. DOI: 10. 1103/PhysRevA. 88. 053828.

    [45] [45] LAW C K. Interaction Between a Moving Mirror and Radiation Pressure: A Hamiltonian Formulation[J]. Physical Review A, 1995, 51(3):2537. DOI: 10.1103/PhysRevA.51.2537.

    [46] [46] WEIS S, RIVIRE R, DELGLISE S, et al. Optomechanically Induced Transparency[J]. Science, 2010, 330(6010):1520-1523. DOI: 10.1126/science.1195596.

    [47] [47] AGARWAL G S, HUANG S. Electromagnetically Induced Transparency in Mechanical Effects of Light[J]. Physical Review A, 2010, 81(4):041803. DOI: 10.1103/PhysRevA.81.041803.

    [48] [48] ZHANG J Q, LI Y, FENG M, et al. Precision Measurement of Electrical Charge with Optomechanically Induced Transparency[J]. Physical Review A, 2012, 86(5): 053806. DOI: 10.1103/PhysRevA.86.053806.

    [49] [49] KRONWALD A, MARQUARDT F. Optomechanically Induced Transparency in the Nonlinear Quantum Regime[J]. Physical Review Letters, 2013, 111(13):133601. DOI: 10.1103/PhysRevLett.111.133601.

    [50] [50] MA P C, ZHANG J Q, XIAO Y, et al. Tunable Double Optomechanically Induced Transparency in an Optomechanical System[J]. Physical Review A, 2014, 90(4):043825. DOI: 10.1103/PhysRevA.90.043825

    [51] [51] LI W, JIANG Y, LI C, et al. Parity-time-symmetry Enhanced Optomechanically-induced-transparency[J]. Scientific Reports, 2016, 6(1):1-11.

    [52] [52] WANG Q, ZHANG J Q, MA P C, et al. Precision Measurement of the Environmental Temperature by Tunable Double Optomechanically Induced Transparency with a Squeezed Field[J]. Physical Review A, 2015, 91(6):063827.

    [53] [53] WU Q, ZHANG J Q, WU J H, et al. Tunable Multi-channel Inverse Optomechanically Induced Transparency and its Applications[J]. Optics Express, 2015, 23(14):18534-18547.

    [54] [54] SI L G, XIONG H, ZUBAIRY M S, et al. Optomechanically Induced Opacity and Amplification in a Quadratically Coupled Optomechanical System[J]. Physical Review A, 2017, 95(3):033803. DOI: 10.1103/PhysRevA.95.033803.

    [55] [55] L H, WANG C, YANG L, et al. Optomechanically Induced Transparency at Exceptional Points[J]. Physical Review Applied, 2018, 10(1):014006. DOI: 10. 1103/PhysRevApplied.10.014006.

    [56] [56] LAI D G, WANG X, QIN W, et al. Tunable Optomechanically Induced Transparency by Controlling the Dark-mode Effect[J]. Physical Review A, 2020, 102(2):023707. DOI: 10.1103/PhysRevA.102.023707.

    [57] [57] ZANGENEH-NEJAD F, FLEURY R. Topological Optomechanically Induced Transparency[J]. Optics Letters, 2020, 45(21):5966-5969. DOI: 10.1364/OL.410002.

    [58] [58] HAO X Z, ZHANG X Y, ZHOU Y H, et al. Topologically Protected Optomechanically Induced Transparency in a One-dimensional Optomechanical Array[J]. Physical Review A, 2022, 105(1):013505. DOI: 10.1103/PhysRevA.105. 013505.

    [59] [59] HAFEZI M, RABL P. Optomechanically Induced Non-reciprocity in Microring Resonators[J]. Optics Express, 2012, 20(7):7672-7684. DOI: 10.1364/OE.20.007672.

    [60] [60] SHEN Z, ZHANG Y L, CHEN Y, et al. Experimental Realization of Optomechanically Induced Non-reciprocity[J]. Nature Photonics, 2016, 10(10):657-661. DOI: 10.1038/nphoton.2016.161.

    [61] [61] XU X W, LI Y. Optical Nonreciprocity and Optomechanical Circulator in Three-mode Optomechanical Systems[J]. Physical Review A, 2015, 91(5):053854. DOI: 10.1103/PhysRevA.91.053854.

    [62] [62] RUESINK F, MIRI M A, ALU A, et al. Nonreciprocity and Magnetic-free Isolation based on Optomechanical Interactions[J]. Nature Communications, 2016, 7(1):1-8. DOI: 10.1038/ncomms13662.

    [63] [63] LI G, XIAO X, LI Y, et al. Tunable Optical Nonreciprocity and a Phonon-photon Router in an Optomechanical System with Coupled Mechanical and Optical Modes[J]. Physical Review A, 2018, 97(2):023801. DOI: 10.1103/PhysRevA.97.023801.

    [64] [64] YAN X B, LU H L, GAO F, et al. Perfect Optical Nonreciprocity in a Double-cavity Optomechanical System[J]. Frontiers of Physics, 2019, 14(5):1-6. DOI: 10.1007/s11467-019-0922-3.

    [65] [65] LIU J H, YU Y F, ZHANG Z M. Nonreciprocal Transmission and Fast-slow Light Effects in a Cavity Optomechanical System[J]. Optics Express, 2019, 27(11):15382-15390. DOI: 10.1364/OE.27.015382.

    [66] [66] DE LEPINAY L M, OCKELOEN-KORPPI C F, MALZ D, et al. Nonreciprocal Transport based on Cavity Floquet Modes in Optomechanics[J]. Physical Review Letters, 2020, 125(2):023603. DOI: 10.1103/PhysRevLett.125.023603.

    [67] [67] QIAN Y B, LAI D G, CHEN M R, et al. Nonreciprocal Photon Transmission with Quantum Noise Reduction via Cross-Kerr Nonlinearity[J]. Physical Review A, 2021, 104(3):033705. DOI: 10.1103/PhysRevA.104.033705.

    [68] [68] LAN Y T, SU W J, WU H, et al. Nonreciprocal Light Transmission via Optomechanical Parametric Interactions[J]. Optics Letters, 2022, 47(5):1182-1185. DOI: 10.1364/OL.446367.

    [69] [69] KONG C, XIONG H, WU Y. Coulomb-interaction-dependent Effect of High-order Sideband Generation in an Optomechanical System[J]. Physical Review A, 2017, 95(3):033820. DOI: 10.1103/PhysRevA.95.033820.

    [70] [70] LIU Z X, XIONG H, WU Y. Generation and Amplification of a High-order Sideband Induced by Two-level Atoms in a Hybrid Optomechanical System[J]. Physical Review A, 2018, 97(1):013801. DOI: 10.1103/PhysRevA.97.013801.

    [71] [71] YAO J, YU Y, ZHANG Z. Effects of Casimir Force on High-order Sideband Generation in an Optomechanical System[J]. Chinese Optics Letters, 2018, 16(11):111201. DOI: 10.3788/col201816.111201.

    [72] [72] HE L Y. Parity-time-symmetry-enhanced Sideband Generation in an Optomechanical System[J]. Physical Review A, 2019, 99(3):033843. DOI: 10.1103/PhysRevA.99.033843.

    [73] [73] LIU J H, HE G, WU Q, et al. Fraction-order Sideband Generation in an Optomechanical System[J]. Optics Letters, 2020, 45(18):5169-5172. DOI: 10.1364/OL.399584.

    [74] [74] LIU J H, YU Y F, WU Q, et al. Tunable High-order Sideband Generation in a Coupled Double-Cavity Optomechanical System[J]. Optics Express, 2021, 29(8):12266-12277. DOI: 10.1364/OE.418033.

    [75] [75] PATERNOSTRO M, VITALI D, GIGAN S, et al. Creating and Probing Multipartite Macroscopic Entanglement with Light[J]. Physical Review Letters, 2007, 99(25):250401. DOI: 10.1103/PhysRevLett.99.250401.

    [76] [76] GENES C, RITSCH H, DREWSEN M, et al. Atom-membrane Cooling and Entanglement Using Cavity Electromagnetically Induced Transparency[J]. Physical Review A, 2011, 84(5):051801. DOI: 10.1103/PhysRevA.84.051801.

    [77] [77] BARZANJEH S, VITALI D, TOMBESI P, et al. Entangling Optical and Microwave Cavity Modes by means of a Nanomechanical Resonator[J]. Physical Review A, 2011, 84(4):042342. DOI: 10.1103/PhysRevA.84.042342.

    [78] [78] BRKJE K, NUNNENKAMP A, GIRVIN S M. Proposal for Entangling Remote Micromechanical Oscillators via Optical Measurements[J]. Physical Review Letters, 2011, 107(12):123601. DOI: 10.1103/PhysRevLett.107.123601.

    [79] [79] PALOMAKI T A, TEUFEL J D, SIMMONDS R W, et al. Entangling Mechanical Motion with Microwave Fields[J]. Science, 2013, 342(6159):710-713. DOI: 10.1126/science.1244563.

    [80] [80] XIANG Y, SUN F X, WANG M, et al. Detection of Genuine Tripartite Entanglement and Steering in Hybrid Optomechanics[J]. Optics Express, 2015, 23(23):30104-30117. DOI: 10.1364/OE.23.030104.

    [81] [81] YANG X, LING Y, SHAO X, et al. Generation of Robust Tripartite Entanglement with a Single-Cavity Optomechanical System[J]. Physical Review A, 2017, 95(5):052303. DOI: 10.1103/PhysRevA.95.052303.

    [82] [82] HUANG S, CHEN A. Quadrature-squeezed Light and Optomechanical Entanglement in a Dissipative Optomechanical System with a Mechanical Parametric Drive[J]. Physical Review A, 2018, 98(6):063843. DOI: 10.1103/PhysRevA.98.063843.

    [83] [83] DIXON K Y, COHEN L, BHUSAL N, et al. Optomechanical Entanglement at Room Temperature: A Simulation Study with Realistic Conditions[J]. Physical Review A, 2020, 102(6):063518. DOI: 10.1103/PhysRevA.102.063518.

    [84] [84] LAI D G, QIN W, HOU B P, et al. Significant Enhancement in Refrigeration and Entanglement in Auxiliary-cavity-assisted Optomechanical Systems[J]. Physical Review A, 2021, 104(4):043521. DOI: 10.1103/PhysRevA.104.043521.

    [85] [85] LIU Y Y, ZHANG Z M, LIU J H, et al. Nonreciprocal Coupling Induced Entanglement Enhancement in a Double-cavity Optomechanical System[J]. Chinese Physics B, 2022, 31(9):094203.

    Tools

    Get Citation

    Copy Citation Text

    LIU Jun-hao, YU Ya-fei, WANG Jin-dong, ZHANG Zhi-ming. Advances in Cavity Optomechanics[J]. Journal of Quantum Optics, 2023, 29(1): 10001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 5, 2022

    Accepted: --

    Published Online: Nov. 17, 2023

    The Author Email: LIU Jun-hao (jhliu@m.scnu.edu.cn)

    DOI:10.3788/jqo20232901.0001

    Topics