Journal of Inorganic Materials, Volume. 36, Issue 1, 1(2021)
[1] EBERLE U, FELDERHOFF M, SCHUTH F. Chemical and physical solutions for hydrogen storage[D]. Angew. Chemie. Int. Ed., 48, 6608-6630(2009).
[2] HE T, PACHFULE P, WU H et al. Hydrogen carriers[D]. Nat. Rev. Mater., 1, 16059(2016).
[3] SCHLAPBACH L, ZÜTTEL A. Hydrogen-storage materials for mobile applications[D]. Nature, 414, 353-358(2001).
[4] GÜR T M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage[D]. Energy & Environ. Sci., 11, 2696-2767(2018).
[5] STAMENKOVIC V R, STRMCNIK D, LOPES P P et al. Energy and fuels from electrochemical interfaces[D]. Nat. Mater., 16, 57-69(2016).
[6] DEAN J A[M]. Lange's Handbook of Chemistry, 13th Edition., 9, 1-172(1991).
[7] KIM H, OH T H, KWON S J. Simple catalyst bed sizing of a NaBH4 hydrogen generator with fast startup for small unmanned aerial vehicles[D]. Int. J. Hydrogen Energy, 41, 1018-1026(2016).
[8] KIM T. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell[D]. Energy, 69, 721-727(2014).
[9] LI H W, LI D P, ZHANG X D. Research and development of foreign submarine sodium borohydride hydrolysis hydrogen generation[D]. Ship Sci. Technol., 34, 135-143(2012).
[10] OH T K. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission[D]. Energy Convers. Manag., 176, 349-356(2018).
[11] CHEN K, OUYANG L Z, ZHONG H et al. Converting H + from coordinated water into H - enables super facile synthesis of LiBH4[D]. Green Chem., 21, 4380-4387(2019).
[12] SEN B, ŞAVK A, KUYULDAR E et al. Hydrogen liberation from the hydrolytic dehydrogenation of hydrazine borane in acidic media[D]. Int. J. Hydrogen Energy, 43, 17978-17983(2018).
[13] KAUFMAN C M, SEN B. Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts[D]. Dalton Trans., 307-313(1984).
[14] LIU B H, LI Z P. A review: hydrogen generation from borohydride hydrolysis reaction[D]. J. Power Sources, 187, 527-534(2009).
[15] BOZKURT G, ÖZER A, YURTCAN A B. Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4[D]. Energy, 180, 702-713(2019).
[16] GENÇ A E¸ AKÇA A, KUTLU B. The catalytic effect of the Au(111) and Pt(111) surfaces to the sodium borohydride hydrolysis reaction mechanism: a DFT study[D]. Int. J. Hydrogen Energy, 43, 14347-14359(2018).
[17] SEMIZ L, ABDULLAYEVA N, SANKIR M. Nanoporous Pt and Ru catalysts by chemical dealloying of Pt-Al and Ru-Al alloys for ultrafast hydrogen generation[D]. J. Alloys Compd., 744, 110-115(2018).
[18] TUAN D D, LIN K Y A. Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride[D]. Chem. Eng. J., 351, 48-55(2018).
[19] LI Y H, ZHANG X, ZHANG Q et al. Activity and kinetics of ruthenium supported catalysts for sodium borohydride hydrolysis to hydrogen[D]. RSC Adv., 6, 29371-29377(2016).
[20] HAO S, YANG L B, CUI L et al. Self-supported spinel FeCo2O4 nanowire array: an efficient non-noble-metal catalyst for the hydrolysis of NaBH4 toward on-demand hydrogen generation[D]. Nanotechnology, 27, 0957-4484(2016).
[21] CAI H, LIU L, CHEN Q et al. Ni-polymer nanogel hybrid particles: a new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride[D]. Energy, 99, 129-135(2016).
[22] LUO C, FU F Y, YANG X J et al. Highly efficient and selective Co@ZIF-8 nanocatalyst for hydrogen release from sodium borohydride hydrolysis[D]. ChemCatChem, 11, 1643-1649(2019).
[23] MAHMOOD J, JUNG S M, KIM S J et al. Cobalt oxide encapsulated in C2N-h2D network polymer as a catalyst for hydrogen evolution[D]. Chem. Mater., 27, 4860-4864(2015).
[24] LIN K Y A, CHANG H A, CHEN B J. Multi-functional MOF-derived magnetic carbon sponge[D]. J. Mater. Chem. A, 4, 13611-13625(2016).
[25] GUO S Q, WU Q Q, SUN J et al. Highly stable and controllable CoB/Ni-foam catalysts for hydrogen generation from alkaline NaBH4 solution[D]. Int. J. Hydrogen Energy, 42, 21063-21072(2017).
[26] CUI L, SUN X P, XU Y H et al. Cobalt carbonate hydroxide nanowire array on Ti mesh: an efficient and robust 3D catalyst for on-demand hydrogen generation from alkaline NaBH4 solution[D]. Chem. Eur. J., 22, 14831-14835(2016).
[27] PATEL N, MIOTELLO A. Progress in Co-B related catalyst for hydrogen production by hydrolysis of boron-hydrides: a review and the perspectives to substitute noble metals[D]. Int. J. Hydrogen Energy, 40, 1429-1464(2015).
[28] GUO M S, CHENG Y, YU Y N et al. Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium[D]. Appl. Surf. Sci., 416, 439-445(2017).
[29] MARCHIONNI A, BEVILACQUA M, FILIPPI J et al. High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix[D]. J. Power Sources, 299, 391-397(2015).
[30] ZHUANG D W, DAI H B, ZHONG Y J et al. A new reactivation method towards deactivation of honeycomb ceramic monolith supported cobalt-molybdenum-boron catalyst in hydrolysis of sodium borohydride[D]. Int. J. Hydrogen Energy, 40, 9373-9381(2015).
[31] SAHINER N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis[D]. Prog. Polym. Sci., 38, 1329-1356(2013).
[32] Ai L H, GAO X Y, JIANG J.
[33] PRASAD D, PATIL K N, CHAITRA C R et al. Sulfonic acid functionalized PVA/PVDF composite hollow microcapsules: highly phenomenal & recyclable catalysts for sustainable hydrogen production[D]. Appl. Surf. Sci., 488, 714-727(2019).
[34] LI Q M, CHEN Y B, LEE D J et al. Preparation of Y-zeolite/CoCl2 doped PVDF composite nanofiber and its application in hydrogen production[D]. Energy, 38, 144-150(2012).
[35] ZHAO L W, LI Q, SU Y et al. A novel enteromorpha based hydrogel for copper and nickel nanoparticle preparation and their use in hydrogen production as catalysts[D]. Int. J. Hydrogen Energy, 42, 6746-6756(2017).
[36] SCHLESINGER H I, BROWN H C, FINHOLT A E. The preparation of sodium borohydride by the high temperature reaction of sodium hydride with borate esters[D]. J. Am. Chem. Soc., 75, 205-209(1953).
[37] KOJIMA Y, HAGA T. Recycling process of sodium metaborate to sodium borohydride[D]. Int. J. Hydrogen Energy, 28, 989-993(2003).
[38] LANG C G, JIA Y, LIU J W et al. NaBH4 regeneration from NaBO2 by high-energy ball milling and its plausible mechanism[D]. Int. J. Hydrogen Energy, 42, 13127-13135(2017).
[39] OUYANG L Z, CHEN W, LIU J W et al. Enhancing the regeneration process of consumed NaBH4 for hydrogen storage[D]. Adv. Energy Mater., 7, 1700299(2017).
[40] SANYAL U, DEMIRCI U B, JAGIRDAR B R et al. Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation[D]. ChemSusChem, 4, 1731-1739(2011).
[41] DEMIRCI U B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage[D]. Int. J. Hydrogen Energy, 42, 9978-10013(2017).
[42] WANG L B, LI H L, ZHANG W B et al. Supported rhodium catalysts for ammonia-borane hydrolysis: dependence of the catalytic activity on the highest occupied state of the single rhodium atoms[D]. Angew. Chemie. Int. Ed., 56, 4712-4718(2017).
[43] HOU C C, LI Q, WANG C J et al. Ternary Ni-Co-P to boost the hydrolytic dehydrogenation of ammonia-borane[D]. Energy & Environ. Sci., 10, 1770-1776(2017).
[44] PIGHIN S A, URRETAVIZCAYA G, BOBET J L. Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding[D]. J. Alloys Compd., 827, 154000(2020).
[45] TAN Z H, OUYANG L Z, LIU J W et al. Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si[D]. Int. J. Hydrogen Energy, 43, 2903-2912(2018).
[46] JIANG J, OUYANG L Z, WANG H et al. Controllable hydrolysis performance of MgLi alloys and their hydrides[D]. ChemPhysChem, 20, 1316-1324(2019).
[47] GAN D Y, LIU Y N, ZHANG J G et al. Kinetic performance of hydrogen generation enhanced by AlCl3
[48] ZHAO Z L, ZHU Y F, LI L Q. Efficient catalysis by MgCl2 in hydrogen generation
[49] ZHENG J, YANG D C, LI W et al. Promoting H2 generation from the reaction of Mg nanoparticles and water using cations[D]. Chem. Comm., 49, 9437-9439(2013).
[50] HUANG X N, GAO T, PAN X L et al. A review: feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications[D]. J. Power Sources, 229, 133-140(2013).
[51] DENG Z Y, FERREIRA J M F, TANAKA Y et al. Physicochemical mechanism for the continuous reaction of
[52] LIU Y A, WANG X H, LIU H Z et al. Improved hydrogen generation from the hydrolysis of aluminum ball milled with hydride[D]. Energy, 72, 421-426(2014).
[53] FAN M Q, WANG Y, TIAN G L et al. Hydrolysis of AlLi/NaBH4 system promoted by Co powder with different particle size and amount as synergistic hydrogen generation for portable fuel cell[D]. Int. J. Hydrogen Energy, 38, 10857-10863(2013).
[54] FAN M Q, LIU S, SUN W Q et al. Controllable hydrogen generation and hydrolysis mechanism of AlLi/NaBH4 system activated by CoCl2 solution[D]. Renew. Energ., 46, 203-209(2012).
[55] FAN M Q, LIU S, SUN W Q et al. Hydrogen generation from Al/NaBH4 hydrolysis promoted by Li-NiCl2 additives[D]. Int. J. Hydrogen Energy, 36, 15673-15680(2011).
[56] FAN M Q, WANG Y, TANG R et al. Hydrogen generation from Al/NaBH4 hydrolysis promoted by Co nanoparticles and NaAlO2 solution[D]. Renew. Energ., 60, 637-642(2013).
[57] HUANG X N, LV C J, HUANG Y X et al. Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water[D]. Int. J. Hydrogen Energy, 36, 15119-15124(2011).
[58] REN R M, ORTIZ A L, MARKMAITREE T et al. Stability of lithium hydride in argon and air[D]. J. Phys. Chem. B, 110, 10567-10575(2006).
[59] DUAN C W, HU L X, MA J L. Ionic liquids as an efficient medium for the mechanochemical synthesis of
[60] CHEN J, FU H, XIONG Y F et al. MgCl2 promoted hydrolysis of MgH2 nanoparticles for highly efficient H2 generation[D]. Nano Energy, 10, 337-343(2014).
[61] HUANG M H, OUYANG L Z, WANG H et al. Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing[D]. Int. J. Hydrogen Energy, 40, 6145-6150(2015).
[62] TEGEL M, SCHÖNE S, KIEBACK B et al. An efficient hydrolysis of MgH2-based materials[D]. Int. J. Hydrogen Energy, 42, 2167-2176(2017).
[63] LU C, MA Y L, LI F et al. Visualization of fast “hydrogen pump” in core-shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt[D]. J. Mater. Chem. A, 7, 14629-14637(2019).
[64] SIFER N, GARDNER K. An analysis of hydrogen production from ammonia hydride hydrogen generators for use in military fuel cell environments[D]. J. Power Sources, 132, 135-138(2004).
Get Citation
Copy Citation Text
Jifeng DENG, Shunpeng CHEN, Xiaojuan WU, Jie ZHENG, Xingguo LI.
Category: REVIEW
Received: Apr. 22, 2020
Accepted: --
Published Online: Jan. 21, 2021
The Author Email: Xingguo LI (xgli@pku.edu.cn)