Journal of Semiconductors, Volume. 41, Issue 8, 081003(2020)

Recent progress in 2D group-V elemental monolayers: fabrications and properties

Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao, and Yeliang Wang
Author Affiliations
  • MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(54)

    [1] G Fiori, F Bonaccorso, G Iannaccone et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 9, 768(2014).

    [2] K S Novoselov, A Mishchenko, A Carvalho et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [3] G Li, Y Y Zhang, H Guo et al. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem Soc Rev, 47, 6073(2018).

    [4] M Gibertini, M Koperski, A F Morpurgo et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 14, 408(2019).

    [5] J B Cheng, C L Wang, X M Zou et al. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv Opt Mater, 7, 1800441(2019).

    [6] I Epstein, A J Chaves, D A Rhodes et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater, 7, 035031(2020).

    [7] J Kou, E P Nguyen, A Merkoçi et al. 2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Mater, 7, 032001(2020).

    [8] X Lin, J C Lu, Y Shao et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat Mater, 16, 717(2017).

    [9] X H Niu, Y W Yi, L J Meng et al. Two-dimensional phosphorene, arsenene, and antimonene quantum dots: Anomalous size-dependent behaviors of optical properties. J Phys Chem C, 123, 25775(2019).

    [10] Y Zhang, T R Chang, B Zhou et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 9, 111(2014).

    [11] S Das Sarma, S Adam, E H Hwang et al. Electronic transport in two-dimensional graphene. Rev Mod Phys, 83, 407(2011).

    [12] C C Liu, W X Feng, Y G Yao. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 107, 076802(2011).

    [13] Z H Wu, J H Hao. Electrical transport properties in group-V elemental ultrathin 2D layers. npj 2D Mater Appl, 4, 4(2020).

    [14] S L Zhang, S Y Guo, Z F Chen et al. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem Soc Rev, 47, 982(2018).

    [15] G Z Qin, Z Z Qin. Negative Poisson's ratio in two-dimensional honeycomb structures. npj Comput Mater, 6, 51(2020).

    [16] Y Q Ma, C F Shen, A Zhang et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano, 11, 7126(2017).

    [17] R X Fei, L Yang. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 14, 2884(2014).

    [18] Q Liu, X W Zhang, L Abdalla et al. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett, 15, 1222(2015).

    [19] J S Qiao, X H Kong, Z X Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 5, 4475(2014).

    [20] L T T Phuong, T C Phong, M Yarmohammadi. Spin-splitting effects on the interband optical conductivity and activity of phosphorene. Sci Rep, 10, 9201(2020).

    [21] S L Zhang, Z Yan, Y F Li et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 54, 3112(2015).

    [22] M Wada, S Murakami, F Freimuth et al. Localized edge states in two-dimensional topological insulators: Ultrathin Bi films. Phys Rev B, 83, 121310(2011).

    [23] S Murakami. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys Rev Lett, 97, 236805(2006).

    [24] A Brown, S Rundqvist. Refinement of the crystal structure of black phosphorus. Acta Crystallogr, 19, 684(1965).

    [25] H Thurn, H Kerbs. Crystal structure of violet phosphorus. Angew Chem Int Ed, 5, 1047(1966).

    [26] R Hultgren, N S Gingrich, B E Warren. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J Chem Phys, 3, 351(1935).

    [27] S Appalakondaiah, G Vaitheeswaran, S Lebègue et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys Rev B, 86, 035105(2012).

    [28] S Fukuoka, T Taen, T Osada. Electronic structure and the properties of phosphorene and few-layer black phosphorus. J Phys Soc Jpn, 84, 121004(2015).

    [29] L B Liang, J Wang, W Z Lin et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett, 14, 6400(2014).

    [30] J S Kim, P J Jeon, J Lee et al. Dual gate black phosphorus field effect transistors on glass for NOR logic and organic light emitting diode switching. Nano Lett, 15, 5778(2015).

    [31] M Buscema, D J Groenendijk, S I Blanter et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 14, 3347(2014).

    [32] L K Li, Y J Yu, G J Ye et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 9, 372(2014).

    [33] A R Baboukani, I Khakpour, V Drozd et al. Single-step exfoliation of black phosphorus and deposition of phosphorene via bipolar electrochemistry for capacitive energy storage application. J Mater Chem, 7, 25548(2019).

    [34] H Liu, A T Neal, Z Zhu et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033(2014).

    [35] J Xie, M Si, D Yang et al. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. J Appl Phys, 116, 073704(2014).

    [36] Y Aierken, D Cakir, C Sevik et al. Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Phys Rev B, 92, 081408(2015).

    [37] B Ghosh, S Nahas, S Bhowmick et al. Electric field induced gap modification in ultrathin blue phosphorus. Phys Rev B, 91, 115433(2015).

    [38] Z Zhu, D Tománek. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 112, 176802(2014).

    [39] J L Zhang, S T Zhao, C Han et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett, 16, 4903(2016).

    [40] C Wang, Y Z You, J H Choi. First-principles study of defects in blue phosphorene. Mater Res Express, 7, 015005(2019).

    [41] Y P Wang, C W Zhang, W X Ji et al. Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer. J Phys D, 49, 055305(2016).

    [42] R Gusmão, Z Sofer, D Bouša et al. Innentitelbild: pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew Chem Int Ed, 129, 14510(2017).

    [43] C Kamal, M Ezawa. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B, 91, 085423(2015).

    [44] G Pizzi, M Gibertini, E Dib et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 7, 12585(2016).

    [45] H Tsai, S Wang, C Hsiao et al. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater, 28, 425(2016).

    [46] P Ares, F Aguilar-Galindo, D Rodríguez-San-miguel et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 28, 6332(2016).

    [47] J P Ji, X F Song, J Z Liu et al. Two-dimensional antimonene singlecrystals grown by van der Waals epitaxy. Nat Commun, 7, 13352(2016).

    [48] X Wu, Y Shao, H Liu et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv Mater, 29, 1605407(2017).

    [49] S Zhu, Y Shao, E Wang et al. Evidence of topological edge states in buckled antimonene monolayers. Nano Lett, 19, 6323(2019).

    [50] Y Shao, Z L Liu, C Cheng et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett, 18, 2133(2018).

    [51] A D Zhao, B Wang. Two-dimensional graphene-like Xenes as potential topological materials. APL Mater, 8, 030701(2020).

    [52] Z Liu, C X Liu, Y S Wu et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys Rev Lett, 107, 136805(2011).

    [53] F Reis, G Li, L Dudy et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 357, 287(2017).

    [54] R Stühler, F Reis, T Müller et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat Phys, 16, 47(2020).

    Tools

    Get Citation

    Copy Citation Text

    Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao, Yeliang Wang. Recent progress in 2D group-V elemental monolayers: fabrications and properties[J]. Journal of Semiconductors, 2020, 41(8): 081003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 9, 2020

    Accepted: --

    Published Online: Sep. 10, 2021

    The Author Email:

    DOI:10.1088/1674-4926/41/8/081003

    Topics