Chinese Journal of Lasers, Volume. 34, Issue 2, 147(2007)
Laser Communications in Space Ⅱ Test and Verification Techniques on the Ground
[2] [2] R. Dumas, B. Laurent. System test bed for demonstration of the optical space communications feasibility [C]. SPIE, 1990, 1218:398~411
[3] [3] M. Bailly, E. Perez. The pointing, acquisition and tracking system of Silex European program: a major technological step for intersatellites optical communication [C]. SPIE, 1991, 1417:142~157
[4] [4] F. Cosson, P. Doubrere, E. Perez. Simulation model and on-ground performances validation of the PAT system for Silex program [C]. SPIE, 1991, 1417:262~276
[5] [5] T.-T. Nielsen. Pointing, acquisition and tracking system for the free space communication system, Silex [C]. SPIE, 1995, 2381:194~205
[6] [6] G. Oppenhuser. Silex program status—a major milestone is reached [C]. SPIE, 1997, 2990:2~9
[7] [7] B. Laurent, G. Planche. Silex overview after flight terminals campaign [C]. SPIE, 1997, 2990:10~22
[8] [8] G. Planche, B. Laurent, J. C. Guillen et al.. Silex final ground testing and in-flight performances assessment [C]. SPIE, 1999, 3615:64~77
[9] [9] M. Shikatani, M. Toyoda. Ground system development for the ETS-VI/LCE laser communications experiment [C]. SPIE, 1993, 1866:21~29
[10] [10] K. Araki, Y. Arimoto, M. Shikatani et al.. Performance evaluation of laser communication equipment onboard the ETS-VI satellite [C]. SPIE, 1996, 2699:52~59
[11] [11] K. Nakagawa, A. Yamamoto. Engineering model test of LUCE (Laser Utilizing Communication Equipment) [C]. SPIE, 1996, 2699:114~121
[12] [12] K. Nakagasa, A. Yamamoto. Performance test result of LUCE (Laser Utilizing Communications Equipment) engineering model [C]. SPIE, 2000, 3932:68~76
[13] [13] T. Jono, M. Toyoshima, N. Takahashi et al.. Laser tracking test under satellite microvibrational disturbances by OICETS ATP system [C]. SPIE, 2002, 4714:97~104
[14] [14] G. C. Baister, CH. Haupt, S. Matthews et al.. The ISLFE terminal development project-results from the engineering breadboard phase [C]. 2002, AIAA, 2034
[15] [15] T. Dreischer, A. Maerki, T. Weigel et al.. Operating in sub-arc seconds: high precision laser terminals for intersatellite communications [C]. SPIE, 2002, 4902:87~98
[16] [16] G. C. Baister, T. Dreischer, E. R. Ground et al.. The OPTEL terminal development programma-enabling technologies for future optical crosslink applications [C]. AIAA, http://www.constraves.com/popup/popup_optel.htm
[17] [17] K. E. Wilson, N. Page, A. Biswas et al.. The lasercom test and evaluation station for flight terminal evaluation [C]. SPIE, 1997, 2990:152~157
[18] [18] A. Biswas, G. Williams, K. E. Wilson et al.. Results of the STRV-2 lasercom terminal evaluation tests [C]. SPIE, 1998, 3266:2~13
[19] [19] M. Jeganathan, S. Monacos. Performance analysis and electronics packaging of the optical communicatios demonstrator [C]. SPIE, 1998, 3266:33~41
[20] [20] A. Biswas, K. E. Wilson, N. A. Page. Lasercom test and evaluation station (LTES) development: an update [C]. SPIE, 1998, 3266:22~32
[21] [21] K. Inagaki, M. Nohara, K. Araki et al.. Free-space simulator for laser transmission [C]. SPIE, 1991, 1417:160~169
[22] [22] K. Inagaki, M. Nohara. Far-field pattern measurement of on-board laser communication equipment by free-space laser transmission simulator [C]. SPIE, 1993, 1866:83~94
[23] [23] J. D. Gaskill. Linear Systems, Fourier Transforms, and Optics [M]. John Wiley & Sons, Inc., 1978
[24] [24] L. Liu, L. Wang, Z. Luan et al.. Physical basis and corresponding instruments for PAT performance testing of inter-satellite laser communication terminals [C]. SPIE, 2006, 6304-40C
[26] [26] J. Sun, L. Liu, M. Yun et al.. The design and fabrication of the satellite relative-movement trajectory simulator for inter-satellite laser communications [C]. SPIE, 2005, 5892:512~519
[27] [27] J. Sun, L. Yang, L. Liu et al.. Large-aperture laser beam scanner for inter-satellite laser communications ground test:assembly and test [C]. SPIE, 2006, 6304-1V
[28] [28] J. Sun, L. Liu, M. Yun et al.. Distortion of beam shape by a rotating double-prism wide-angle laser beam scanner [J]. Opt. Eng., 2006, 45(4):043004-1~043004-4
[29] [29] A. Li, J. Sun, L. Wang et al.. Submicroradian accuracy scanning system with a double-wedge rotating around the orthogonal axes [C]. SPIE, 2005, 5892:541~548
[31] [31] A. Li, L. Liu, J. Sun et al.. Research on scanner of tilting orthogonal double prisms [J]. Appl. Opt., 2006, 45(31):8063~8069
[32] [32] A. Li, L. Liu, J. Sun et al.. Double-prism scanner for testing tracking performance of inter-satellite laser communication terminals [C]. SPIE, 2006, 6304-1R
[33] [33] L. Wang, Z. Luan, J. Sun et al.. A double-focus collimator system for full PAT performance testing of inter-satellite laser communication terminals [C]. SPIE, 2006, 6304-1T
[34] [34] S. Teng, L. Liu, Z. Luan et al.. Simulative technique to measure beam transmission of in-satellite communications [C]. SPIE, 2003, 5160:417~421
[35] [35] L. Wan, A. Li, L. Wang et al.. Design of an optical testbed for in-lab testing and validation for the intersatellite lasercom terminals [C]. SPIE, 2005, 5892:549~554
[37] [37] Z. Luan, L. Liu, S. Teng et al.. Jamin double-shearing interferometer for diffraction limited wavefront test [J]. Appl. Opt., 2004, 43:1819-1824
[39] [39] R. Xu, H. Liu, Z. Luan et al.. A whole-field double-shearing interferometer for the measurement of diffraction-limit wavefront [C]. SPIE, 2005, 5892-1H
[40] [40] R. Xu, Z. Luan, H. Liu et al.. The measurement of diffraction-limit wavefront with the double-shearing interferometers [J]. J. Opt. A: Pure Appl. Opt., 2005, 7(11):617~623
Get Citation
Copy Citation Text
[in Chinese]. Laser Communications in Space Ⅱ Test and Verification Techniques on the Ground[J]. Chinese Journal of Lasers, 2007, 34(2): 147