Chinese Journal of Lasers, Volume. 49, Issue 16, 1602005(2022)
Densification Behavior and Microstructure of High Strength and High Conductivity Copper Alloy Fabricated by Selective Laser Melting
[1] Gradl P R, Protz C S, Ellis D L et al. Progress in additively manufactured copper-alloy GRCop-84, GRCop-42, and bimetallic combustion chambers for liquid rocket engines[C](2019).
[2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).
[3] Kwon B, Maniscalco N I, Jacobi A M et al. High power density air-cooled microchannel heat exchanger[J]. International Journal of Heat and Mass Transfer, 118, 1276-1283(2018).
[4] Hong M S, Park I J, Kim J G. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube[J]. Metals and Materials International, 23, 708-714(2017).
[5] Seltzman A H, Wukitch S J. Surface roughness and finishing techniques in selective laser melted GRCop-84 copper for an additive manufactured lower hybrid current drive launcher[J]. Fusion Engineering and Design, 160, 111801(2020).
[6] Correia J B, Davies H A, Sellars C M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys[J]. Acta Materialia, 45, 177-190(1997).
[7] Wang Q S, Lou H F, Ma K D[M]. Development and application of copper and copper alloys(2013).
[8] Meng A, Nie J F, Wei K et al. Optimization of strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by cold rolling and aging treatment[J]. Vacuum, 167, 329-335(2019).
[9] Baitimerov R, Lykov P, Zherebtsov D et al. Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting[J]. Materials, 11, 742(2018).
[10] Qiu C L, Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 578, 230-239(2013).
[11] Liu S W, Zhu H H, Peng G Y et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 142, 319-328(2018).
[12] Qin Y L, Sun B H, Zhang H et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers, 48, 1402002(2021).
[13] Waqar S, Guo K, Sun J. FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel[J]. Journal of Manufacturing Processes, 66, 81-100(2021).
[14] Wang M S, Liu E W, du Y L et al. Cracking mechanism and a novel strategy to eliminate cracks in TiAl alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 204, 114151(2021).
[15] Mao Y Z, Yang J X, Xu W J. Laser surface texturing process and its mechanism for brass material[J]. Chinese Journal of Lasers, 48, 1002111(2021).
[16] de Leon Nope G V, Perez-Andrade L I, Corona-Castuera J et al. Study of volumetric energy density limitations on the IN718 mesostructure and microstructure in laser powder bed fusion process[J]. Journal of Manufacturing Processes, 64, 1261-1272(2021).
[17] Murkute P, Pasebani S, Isgor O B. Production of corrosion-resistant 316L stainless steel clads on carbon steel using powder bed fusion-selective laser melting[J]. Journal of Materials Processing Technology, 273, 116243(2019).
[18] Karimi J, Suryanarayana C, Okulov I et al. Selective laser melting of Ti6Al4V: effect of laser re-melting[J]. Materials Science and Engineering: A, 805, 140558(2021).
[19] Hou W, Chen J, Chu S L et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 45, 0702003(2018).
[20] Zhang W Q, Zhu H H, Hu Z H et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 53, 918-926(2017).
[21] Hu Z H, Nie X J, Qi Y et al. Cracking criterion for high strength Al-Cu alloys fabricated by selective laser melting[J]. Additive Manufacturing, 37, 101709(2021).
[22] Gustmann T, Santos J M, Gargarella P et al. Properties of Cu-based shape-memory alloys prepared by selective laser melting[J]. Shape Memory and Superelasticity, 3, 24-36(2017).
[23] Ventura A P, Wade C A, Pawlikowski G et al. Mechanical properties and microstructural characterization of Cu-4.3 pct Sn fabricated by selective laser melting[J]. Metallurgical and Materials Transactions A, 48, 178-187(2017).
[24] Liu Z H, Zhang D Q, Sing S L et al. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy[J]. Materials Characterization, 94, 116-125(2014).
[25] Sing S L, Lam L P, Zhang D Q et al. Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy[J]. Materials Characterization, 107, 220-227(2015).
[26] Ma Z B, Zhang K F, Ren Z H et al. Selective laser melting of Cu-Cr-Zr copper alloy: parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 828, 154350(2020).
[27] Wallis C, Buchmayr B. Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion[J]. Materials Science and Engineering: A, 744, 215-223(2019).
[28] Zuo W, Song M H, Yang H Q et al. Application of additive manufacturing technology in liquid rocket engine[J]. Journal of Rocket Propulsion, 44, 55-65(2018).
[29] Dobatkin S V, Gubicza J, Shangina D V et al. High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation[J]. Materials Letters, 153, 5-9(2015).
[30] Gu R N, Sing W K, Yan M. Laser additive manufacturing of typical highly reflective materials: gold, silver and copper[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 50, 44-57(2020).
[31] Aboulkhair N T, Everitt N M, Ashcroft I et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 1/2/3/4, 77-86(2014).
[32] Nie X J, Zhang H, Zhu H H et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples[J]. Journal of Materials Processing Technology, 256, 69-77(2018).
[33] Karlsson D, Marshal A, Johansson F et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy-a comparison between selective laser melting and induction melting[J]. Journal of Alloys and Compounds, 784, 195-203(2019).
[34] Thijs L, Kempen K, Kruth J P et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 61, 1809-1819(2013).
[35] Dobatkin S V, Gubicza J, Shangina D V et al. High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation[J]. Materials Letters, 153, 5-9(2015).
[36] Zhang S J, Li R G, Kang H J et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment[J]. Materials Science and Engineering: A, 680, 108-114(2017).
Get Citation
Copy Citation Text
Shasha Zhang, Baopeng Zhang, Wenqi Zhang, Huanqing Yang, Wei Zheng, Yun Wang, Dongjian Peng, Haihong Zhu. Densification Behavior and Microstructure of High Strength and High Conductivity Copper Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2022, 49(16): 1602005
Category: laser manufacturing
Received: Oct. 18, 2021
Accepted: Nov. 22, 2021
Published Online: Jul. 28, 2022
The Author Email: Zhu Haihong (zhuhh@hust.edu.cn)