NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040014(2023)

Application of machine learning to the study of QCD transition in heavy ion collisions

Fupeng LI1, Longgang PANG1、*, and Xinnian WANG2、**
Author Affiliations
  • 1Key Laboratory of Quark and Lepton Physics (MOE) & Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
  • 2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
  • show less
    References(74)

    [2] Shuryak E. Strongly coupled quark-gluon plasma in heavy ion collisions[J]. Reviews of Modern Physics, 89, 035001(2017).

    [3] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).

    [4] Bass S A, Bernhard J, Moreland J S. Determination of quark-gluon-plasma parameters from a global Bayesian analysis[J]. Nuclear Physics A, 967, 67-73(2017).

    [5] Everett D, Ke W, Paquet J F et al. (JETSCAPE),Phenomenological constraints on the transport properties of QCD matter with data-driven model averaging[J]. Physical Review Letters, 126, 242301(2021).

    [6] Boehnlein A, Diefenthaler M, Sato N et al. Colloquium: machine learning in nuclear physics[J]. Reviews of Modern Physics, 94, 031003(2022).

    [7] Carleo G, Cirac I, Cranmer K et al. Machine learning and the physical sciences[J]. Reviews of Modern Physics, 91, 045002(2019).

    [9] Das Sarma S, Deng D L, Duan L M. Machine learning meets quantum physics[J]. Physics Today, 72, 48-54(2019).

    [10] Mehta P, Wang C H, Day A G R et al. A high-bias, low-variance introduction to Machine Learning for physicists[J]. Physics Reports, 810, 1-124(2019).

    [11] Albertsson K, Altoe P, Anderson D et al. Machine learning in high energy physics community white paper[J]. Journal of Physics: Conference Series, 1085, 022008(2018).

    [12] Liu J G, Wang L. Differentiate everything: a lesson from deep learning[J]. Physics, 50, 69(2021).

    [13] Bedaque P, Boehnlein A, Cromaz M et al. A.I. for nuclear physics[J]. The European Physical Journal A, 57, 100(2021).

    [14] PANG Longgang, ZHOU Kai, WANG Xinnian. Deep learning for nuclear physics[J]. Nuclear Physics Review, 37, 720-726(2020).

    [16] Monnai A, Schenke B, Shen C. Equation of state at finite densities for QCD matter in nuclear collisions[J]. Physical Review C, 100, 024907(2019).

    [17] Shen C, Qiu Z, Song H C et al. The iEBE-VISHNU code package for relativistic heavy-ion collisions[J]. Computer Physics Communications, 199, 61-85(2016).

    [18] Pang L G, Petersen H, Wang X N. Pseudorapidity distribution and decorrelation of anisotropic flow within the open-computing-language implementation CLVisc hydrodynamics[J]. Physical Review C, 97, 064918(2018).

    [19] Pratt S, Sangaline E, Sorensen P et al. Constraining the equation of state of superhadronic matter from heavy-ion collisions[J]. Physical Review Letters, 114, 202301(2015).

    [20] Bernhard J E, Moreland J S, Bass S A et al. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium[J]. Physical Review C, 94, 024907(2016).

    [22] Bernhard J E, Moreland J S, Bass S A. Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma[J]. Nature Physics, 15, 1113-1117(2019).

    [24] Pang L G, Zhou K, Su N et al. An equation-of-state-meter of quantum chromodynamics transition from deep learning[J]. Nature Communications, 9, 210(2018).

    [25] Schenke B, Tribedy P, Venugopalan R. Fluctuating glasma initial conditions and flow in heavy ion collisions[J]. Physical Review Letters, 108, 252301(2012).

    [26] Du Y L, Zhou K, Steinheimer J et al. Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning[J]. The European Physical Journal C, 80, 516(2020).

    [27] Kvasiuk Y, Zabrodin E, Bravina L et al. Classification of equation of state in relativistic heavy-ion collisions using deep learning[J]. Journal of High Energy Physics, 2020, 133(2020).

    [28] Steinheimer J, Pang L G, Zhou K et al. A machine learning study to identify spinodal clumping in high energy nuclear collisions[J]. Journal of High Energy Physics, 2019, 122(2019).

    [29] Kuttan M O, Zhou K, Steinheimer J et al. An equation-of-state-meter for CBM using PointNet[J]. Journal of High Energy Physics, 2021, 184-184(2021).

    [30] Jiang L J, Wang L X, Zhou K. Deep learning stochastic processes with QCD phase transition[J]. Physical Review D, 103, 116023(2021).

    [31] Bialas A, Peschanski R B. Intermittency in multiparticle production at high energy[J]. Nuclear Physics B, 308, 857-867(1988).

    [32] Satz H. Intermittency and critical behavior[J]. Nuclear Physics B, 326, 613-618(1989).

    [33] Hwa R C. Fractal measures in multiparticle production[J]. Physical Review D, Particles and Fields, 41, 1456-1462(1990).

    [34] Antoniou N G, Contoyiannis Y F, Diakonos F K et al. Pion production from a critical QCD phase[J]. Nuclear Physics A, 693, 799-824(2001).

    [35] Wu J, Lin Y F, Wu Y F et al. Probing QCD critical fluctuations from intermittency analysis in relativistic heavy-ion collisions[J]. Physics Letters B, 801, 135186(2020).

    [36] Anticic T, Baatar B, Bartke J et al. Critical fluctuations of the proton density in A+A collisions at 158A GeV[J]. The European Physical Journal C, 75, 587(2015).

    [37] Davis N, Collaboration N. Searching for the critical point of strongly interacting matter in nucleus-nucleus collisions at CERN SPS[C], 305(2020).

    [38] Davis N, Antoniou N, Diakonos F K et al. Recent results from proton intermittency analysis in nucleus-nucleus collisions from NA61/SHINE at CERN SPS[C], 154(2019).

    [39] Huang Y G, Pang L G, Luo X F et al. Probing criticality with deep learning in relativistic heavy-ion collisions[J]. Physics Letters B, 827, 137001(2022).

    [40] Bazavov A, Bhattacharya T, DeTar C et al. (HotQCD), Equation of state in (2+1)-flavor QCD[J]. Physical Review D, 90, 094503(2014).

    [41] Plumari S, Alberico W M, Greco V et al. Recent thermodynamic results from lattice QCD analyzed within a quasi-particle model[J]. Physical Review D, 84, 094004(2011).

    [44] Parotto P, Bluhm M, Mroczek D et al. QCD equation of state matched to lattice data and exhibiting a critical point singularity[J]. Physical Review C, 101, 034901(2020).

    [45] Liu Z M, Zhao W B, Song H C. Principal component analysis of collective flow in relativistic heavy-ion collisions[J]. The European Physical Journal C, 79, 870(2019).

    [46] Wang R, Ma Y G, Wada R et al. Nuclear liquid-gas phase transition with machine learning[J]. Physical Review Research, 2, 043202(2020).

    [47] Liu J, Gao C, Wan N et al. Basic quantities of the equation of state in isospin asymmetric nuclear matter[J]. Nuclear Science and Techniques, 32, 117(2021).

    [48] Danielewicz P, Lacey R, Lynch W G. Determination of the equation of state of dense matter[J]. Science, 298, 1592-1596(2002).

    [49] Lattimer J, Prakash M. Neutron star observations: prognosis for equation of state constraints[J]. Physics Reports, 442, 109-165(2007).

    [50] LI Fupeng, WANG Yongjia, LI Qingfeng. Using deep learning to study the equation of state of nuclear matter[J]. Nuclear Physics Review, 37, 825-832(2020).

    [51] Liu X Q, Huang M R, Lin W P et al. Symmetry energy extraction from primary fragments in intermediate heavy-ion collisions[J]. Nuclear Science and Techniques, 26, S20508(2015).

    [52] Tsang M B, Zhang Y X, Danielewicz P et al. Constraints on the density dependence of the symmetry energy[J]. Physical Review Letters, 102, 122701(2009).

    [53] Greco V, Baran V, Colonna M et al. Relativistic effects in the search for high density symmetry energy[J]. Physics Letters B, 562, 215-220(2003).

    [54] Wang Y J, Li F P, Li Q F et al. Finding signatures of the nuclear symmetry energy in heavy-ion collisions with deep learning[J]. Physics Letters B, 822, 136669(2021).

    [55] Wang Y J, Gao Z P, Lyu H L et al. Decoding the nuclear symmetry energy event-by-event in heavy-ion collisions with machine learning[J]. Physics Letters B, 835, 137508(2022).

    [56] Ma G L, Zhang S, Ma Y G et al. Di-hadron azimuthal correlation and Mach-like cone structure in a parton/hadron transport model[J]. Physics Letters B, 641, 362-367(2006).

    [57] Neufeld R B. Mach cones in the quark-gluon plasma: viscosity, speed of sound, and effects of finite source structure[J]. Physical Review C, 79, 054909(2009).

    [59] He Y Y, Luo T, Wang X et al. Linear boltzmann transport for jet propagation in the quark-gluon plasma: elastic processes and medium recoil[J]. Physical Review C, 91, 054908(2015).

    [60] Cacciari M. FastJet: a code for fast kt clustering, and more[J]. Ads Abstract Service(2006).

    [61] Zhou K, Endrődi G, Pang L G et al. Regressive and generative neural networks for scalar field theory[J]. Physical Review D, 100, 011501(2019).

    [62] Pawlowski J M, Urban J M. Reducing autocorrelation times in lattice simulations with generative adversarial networks[J]. Machine Learning: Science and Technology, 1, 045011(2020).

    [63] Albergo M S, Kanwar G, Shanahan P E. Flow-based generative models for Markov chain Monte Carlo in lattice field theory[J]. Physical Review D, 100, 034515(2019).

    [64] Wu D, Wang L, Zhang P. Solving statistical mechanics using variational autoregressive networks[J]. Physical Review Letters, 122, 080602(2019).

    [65] Cristoforetti M, Di Renzo F, Eruzzi G et al. An efficient method to compute the residual phase on a Lefschetz thimble[J]. Physical Review D, 89, 114505(2014).

    [66] Cristoforetti A C M, Renzo F, Scorzato L. New approach to the sign problem in quantum field theories: high density QCD on a Lefschetz thimble[J]. Physical Review D, 86, 074506(2012).

    [67] Fujii H, Kamata S, Kikukawa Y. Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density[J]. Journal of High Energy Physics, 2015, 1-17(2015).

    [68] Alexandru A, Bedaque P, Lamm H et al. Deep learning beyond Lefschetz thimbles[J]. Physical Review D, 96, 094505.

    [69] Alexandru A, Bedaque P F, Lamm H et al. Finite-density Monte Carlo calculations on sign-optimized manifolds[J]. Physical Review D, 97, 094510(2018).

    [70] Alexandru A, Bedaque P F, Lamm H et al. Fermions at finite density in 2+1 dimensions with sign-optimized manifolds[J]. Physical Review Letters, 121, 191602(2018).

    [71] Bursa F, Kroyter M. A simple approach towards the sign problem using path optimisation[J]. Journal of High Energy Physics, 2018, 54(2018).

    [72] Ohnishi A, Mori Y, Kashiwa K. Path optimization for the sign problem in field theories using neural network[C], 024011(2019).

    [73] Wynen J L, Berkowitz E, Krieg S et al. Machine learning to alleviate Hubbard model sign problems[J]. Physical Review B, 103, 125153(2021).

    [74] Wan Z Q, Zhang S X, Yao H. Mitigating the fermion sign problem by automatic differentiation[J]. Physical Review B, 106, L241109(2022).

    Tools

    Get Citation

    Copy Citation Text

    Fupeng LI, Longgang PANG, Xinnian WANG. Application of machine learning to the study of QCD transition in heavy ion collisions[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 6, 2023

    Accepted: --

    Published Online: Apr. 27, 2023

    The Author Email:

    DOI:10.11889/j.0253-3219.2023.hjs.46.040014

    Topics