Optics and Precision Engineering, Volume. 33, Issue 4, 591(2025)

Pseudo-label confidence regulates semi-supervised semantic segmentation of pathological images of colorectal cancer

Hanhan XU1, Yinhui ZHANG1、*, Zifen HE1、*, Jiacen LIU1, Zhenhui LI2, Lin WU3, and Benjie SHI1
Author Affiliations
  • 1Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming650500, China
  • 2Department of Radiology, Yunnan Cancer Hospital, Kunming650106, China
  • 3Department of Pathology, Yunnan Cancer Hospital, Kunming650106, China
  • show less
    Figures & Tables(17)
    PCNet network model
    Pseudo-label refinement process
    Visualization of the label refinement process
    Adaptive random cascade data enhancement effect
    Examples of Medical Pathology Image dataset
    Comparison of segmentation results (1/4 labeled data) by different methods
    Visualization of results on BCSS-WSSS (1/4 labeled data)
    Visualization of results on LUAD-HistoSeg (1/4 labeled data)
    • Table 1. Experimental data set partitioning

      View table
      View in Article

      Table 1. Experimental data set partitioning

      DatasetSize/pixelTrainTest
      Full1/41/81/16
      CR-SEG224×2244 6401 1605802901 160
      BCSS224×2246 7201 6808404201 680
      LUAD224×2244801206030120
    • Table 2. Comparative experiments of different backbone networks(DeepLabV3+)

      View table
      View in Article

      Table 2. Comparative experiments of different backbone networks(DeepLabV3+)

      Backbone networkLabeled datamIoU/%mDice/%mAcc/%mPre/%

      Resnet50

      1/474.0985.0482.8685.32
      1/872.7784.1481.9784.57
      1/1671.8083.4481.4783.97

      Resnet101

      1/472.9984.2882.2284.19
      1/871.4083.1881.1482.68
      1/1671.0482.9480.7482.88
    • Table 3. Comparative experiments of different basic networks(resnet50)

      View table
      View in Article

      Table 3. Comparative experiments of different basic networks(resnet50)

      Basic networkLabeled datamIoU/%mDice/%mAcc/%mPre/%

      DeepLabV3+

      1/474.0985.0482.8685.32
      1/872.7784.1481.9784.57
      1/1671.8083.4481.4783.97

      PSPNet

      1/472.5083.9981.5483.68
      1/870.8782.8280.6283.22
      1/1668.8381.3079.6380.49

      UNet

      1/471.5583.2981.1882.95
      1/869.7582.1178.9782.12
      1/1668.0580.9077.3580.80
    • Table 4. Experimental comparison of different semi-supervised network segmentation methods based on DeepLabV3+(resnet50)

      View table
      View in Article

      Table 4. Experimental comparison of different semi-supervised network segmentation methods based on DeepLabV3+(resnet50)

      MethodLabeled datamIoUmDicemAccmPreClassIoUClassDice
      BACKSTRNORMTUMBACKSTRNORMTUM
      ST

      1/4

      66.4779.5877.7678.8971.7276.8658.0359.2683.5386.9373.4474.42
      ST++67.6680.5078.3180.4971.7376.9361.6160.3583.5486.9676.2475.27
      CCT68.8781.4179.0881.9270.8678.1264.1962.3082.9487.7278.1976.77
      ELN72.9184.2382.1084.6073.5181.1669.0067.9784.7389.6081.6680.93
      U2PL73.4884.6182.5684.6874.1381.5370.0268.2285.1589.8382.3781.11
      UniMatch73.6884.7582.7085.0774.9381.2570.6167.9285.6789.6682.7880.90
      Ours74.0985.0482.8685.3274.5081.2470.9769.6685.3889.6583.0282.12
      ST

      1/8

      66.8279.9077.7379.2071.8475.5760.8459.0683.6186.0875.6574.26
      ST++67.3780.2878.2080.1072.1176.7660.9759.6583.7986.8575.7674.73
      CCT66.5679.7577.0880.7268.2376.1762.1359.7081.1286.4776.6574.76
      ELN71.4483.1881.2883.7174.4280.4766.8464.0385.3489.1880.1378.07
      U2PL71.7083.4081.2783.5473.6379.8967.0266.2584.8188.8280.2679.70
      UniMatch72.6284.0182.2183.3074.7280.9668.9865.8085.5389.4881.6479.37
      Ours72.7784.1481.9784.5773.4180.8469.8267.0184.6789.4082.2380.25
      ST

      1/16

      65.8379.0977.2278.6471.5876.2259.0656.4583.4386.5074.2672.12
      ST++66.2679.4277.4979.2871.9476.5658.7757.7983.6886.7374.0373.25
      CCT64.7078.2975.8579.0069.6575.0457.8856.2282.1185.7473.3271.97
      ELN70.7082.6680.8682.3273.7580.0465.1163.8884.8988.9178.8777.96
      U2PL70.8082.7780.6682.9272.9579.4966.4264.3584.3688.5779.8278.31
      UniMatch71.4083.1781.2182.9072.4680.5168.3864.2584.0389.2081.2278.23
      Ours71.8083.4481.4783.9774.3480.4967.2865.0885.2889.1980.4478.84
    • Table 5. Ablation results of different PCNet modules (Resnet50)

      View table
      View in Article

      Table 5. Ablation results of different PCNet modules (Resnet50)

      MethodmIoUmDicemAccmPreClassIoUClassDice
      CCRPLRC-SDABACKSTRNORMTUMBACKSTRNORMTUM
      74.0985.0482.8685.3274.5081.2470.9769.6685.3889.6583.0282.12
      72.0783.6681.4583.6673.7379.8567.6367.0784.8888.8080.6980.29
      72.6884.1181.7884.5373.5379.9269.6667.6184.7588.9082.1280.68
      71.3083.1281.1183.4372.9380.4367.2264.6284.3489.2280.4078.51
      70.3382.4680.0383.2671.3978.9366.3764.6383.3188.2279.7978.52
      68.9681.4479.3381.2872.1078.3163.9661.4783.7987.8078.0276.14
      69.7482.0079.8982.3973.4578.5863.6663.2684.6988.0077.7977.50
      67.2880.2477.8880.7171.6476.1860.8760.4583.4886.4875.6775.35
    • Table 6. Influence of different confidence thresholds on the training teacher model

      View table
      View in Article

      Table 6. Influence of different confidence thresholds on the training teacher model

      Confidence thresholdmIoUmDicemAccmPre
      0.354.5967.6470.0569.23
      0.469.9682.2079.9781.63
      0.570.3382.4680.0383.26
      0.669.1581.5979.3682.30
      0.768.4281.1278.2782.79
    • Table 7. Comparative experimental data on BCSS-WSSS

      View table
      View in Article

      Table 7. Comparative experimental data on BCSS-WSSS

      MethodLabeled datamIoUmDicemAccmPreClassIoUClassDice
      OTRTUMNECSTRLYMOTRTUMNECSTRLYM
      ST

      1/8

      46.7261.3270.8457.1725.9371.7823.9261.5650.3841.1983.5738.6176.2167.00
      ST++46.9862.1269.1659.4330.9369.1125.7261.4447.6747.2581.7340.9276.1264.57
      CCT58.0572.4875.0772.7334.9574.8755.6066.8358.0051.8085.6371.4680.1273.42
      ELN59.3073.3776.5272.0734.7377.4960.0967.9356.2751.5587.3275.0780.9172.02
      U2PL60.5874.4777.8074.9037.1678.6458.1169.4559.5354.1988.0473.5181.9774.63
      UniMatch61.9875.7178.5675.6141.1279.9959.2369.8759.6858.2888.8874.3982.2674.75
      Ours63.0976.6878.5177.2043.2679.7262.7169.7160.0660.4088.7277.0882.1575.05
      ST

      1/16

      43.8658.7166.5156.1231.9067.3116.9957.5345.5748.3780.4629.0473.0462.61
      ST++46.9761.7569.8658.9028.6170.7023.6461.4850.4244.4982.8438.2476.1567.04
      CCT51.5166.0572.6362.2722.4074.5347.0864.2649.2636.6085.4164.0278.2466.01
      ELN55.9570.5874.4868.7832.1775.1852.7966.1053.5148.6885.8369.1079.5969.71
      U2PL58.9273.2675.3575.4237.6376.9154.9566.9858.1554.6886.9570.9380.2373.54
      UniMatch60.1074.2877.5771.3841.3878.7057.1668.7354.5458.5488.0872.7481.4770.58
      Ours60.2074.3377.2072.5739.7578.0858.5368.3756.2756.8987.6973.8481.2172.02
    • Table 7. Comparative experimental data on BCSS-WSSS

      View table
      View in Article

      Table 7. Comparative experimental data on BCSS-WSSS

      MethodLabeled datamIoUmDicemAccmPreClassIoUClassDice
      OTRTUMNECSTRLYMOTRTUMNECSTRLYM
      ST

      1/4

      46.2360.8869.5958.5528.8070.7920.7559.8850.9344.7282.9034.3774.9067.49
      ST++46.4161.5568.1758.8231.1867.3123.4560.0650.0347.5480.4637.9975.0566.69
      CCT58.4572.8876.4771.3941.4577.1545.8567.8659.9358.6187.1062.8880.8574.94
      ELN62.6276.3078.4376.5142.4778.9962.7169.9858.9759.6288.2677.0882.3474.19
      U2PL62.8076.3478.1077.1241.0680.8263.7768.0060.3358.2189.3977.8780.9675.26
      UniMatch63.3976.8479.3077.5243.0281.0563.1070.5659.2060.1689.5477.3882.7474.37
      Ours64.2677.5579.2578.2144.3280.9365.7670.7959.5061.4289.4679.3582.9074.61
    • Table 8. Comparative experimental data on LUAD-HistoSeg

      View table
      View in Article

      Table 8. Comparative experimental data on LUAD-HistoSeg

      MethodLabeled datamIoUmDicemAccmPreClassIoUClassDice
      BACKTETASNECLYMBACKTETASNECLYM
      ST

      1/4

      49.6965.9064.3664.9958.4957.6153.7335.9642.6473.8173.1069.9052.9059.79
      ST++51.1867.2066.3265.4258..4162.1352.2736.1146.9673.7476.6468.6653.0663.91
      CCT58.9073.8773.7271.1659.9669.4661.9347.8855.2574.9781.9876.4964.7671.18
      ELN69.3881.8580.2779.9070.2475.5270.0668.8062.2882.5286.0682.4081.5276.76
      U2PL69.4581.9579.5081.0767.7673.4469.4469.9866.6080.7884.6981.9682.3479.95
      UniMatch69.3781.8879.8581.4767.8074.1270.0769.0965.7680.8185.1482.4081.7279.35
      Ours69.4581.9379.7981.1364.7473.8871.1670.4167.0478.6084.9783.1582.6480.27
      ST

      1/8

      46.0961.6063.2859.2559.6656.6552.7119.9541.4874.7472.3369.0333.2758.64
      ST++47.9264.2661.4264.3260.0454.1450.8937.1537.3675.0370.2567.4554.1754.40
      CCT48.1262.8066.4963.1154.1265.8051.8653.8215.0170.2379.3768.3069.9826.11
      ELN66.1979.5377.5979.4169.7973.0166.1165.2556.8082.2184.4079.6078.9772.45
      U2PL68.4181.1979.0681.2167.8573.8768.6469.2362.4580.8584.9781.4181.8276.88
      UniMatch68.5381.3079.0682.4966.9673.5568.6968.2265.2380.2184.7681.4481.1178.96
      Ours68.7381.4179.6081.0564.3674.2470.5969.1665.2978.3285.2282.7681.7779.00
      ST

      1/16

      43.7758.3562.2956.7357.8856.6351.099.9143.3573.3272.3167.6318.0360.48
      ST++44.6559.7563.2657.4557.9858.7951.6115.2239.6473.4074.0468.0926.4256.78
      CCT44.6260.5162.0960.4656.6357.1051.8730.3427.1572.3172.6968.3046.5542.71
      ELN61.3175.5275.9072.0569.6771.1964.1243.6757.9282.1383.1778.1460.7973.36
      U2PL65.9279.4375.7681.0866.9970.1462.0166.5363.9580.2382.4576.5579.9078.01
      UniMatch68.2081.0578.2877.9766.2971.5268.5671.3563.3079.7383.3981.3583.2877.53
      Ours68.9281.5579.2780.4062.9772.8770.9571.1266.7177.2884.3083.0083.1280.03
    Tools

    Get Citation

    Copy Citation Text

    Hanhan XU, Yinhui ZHANG, Zifen HE, Jiacen LIU, Zhenhui LI, Lin WU, Benjie SHI. Pseudo-label confidence regulates semi-supervised semantic segmentation of pathological images of colorectal cancer[J]. Optics and Precision Engineering, 2025, 33(4): 591

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 1, 2024

    Accepted: --

    Published Online: May. 20, 2025

    The Author Email: Yinhui ZHANG (zhangyinhui@kust.edu.cn), Zifen HE (zyhhzf1998@163.com)

    DOI:10.37188/OPE.20253304.0591

    Topics