Infrared Technology, Volume. 47, Issue 4, 459(2025)

Infrared Multi-Scale Target Detection Algorithm Based on RCR-YOLO

Xiaohan CHEN and Yuanyuan XU*
Author Affiliations
  • Department of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
  • show less
    References(27)

    [1] [1] LI K, WANG J, Jalil H, et al. A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5[J].Computers and Electronics in Agriculture, 2023,204: 107534.

    [2] [2] ZHANG Y, GUO K. Power plant indicator light detection system based on improved YOLOv5[J].Journal of Beijing Institute of Technology, 2022,31(6): 605-612.

    [3] [3] YANG H, FANG Y, LIU L, et al. Improved YOLOv5 based on feature fusion and attention mechanism and its application in continuous casting slab detection[J].IEEE Transactions on Instrumentation and Measurement, 2023.

    [4] [4] ZHONG S, ZHOU H, MA Z, et al. Multiscale contrast enhancement method for small infrared target detection[J].Optik, 2022,271: 170134.

    [6] [6] JIANG C, REN H, YE X, et al. Object detection from UAV thermal infrared images and videos using YOLO models[J].International Journal of Applied Earth Observation and Geoinformation, 2022,112: 102912.

    [7] [7] CAO S, WANG T, LI T, et al. UAV small target detection algorithm based on an improved YOLOv5s model[J].Journal of Visual Communication and Image Representation, 2023,97: 103936.

    [8] [8] LIU Z, GAO X, WAN Y, et al. An improved YOLOv5 method for small object detection in UAV capture scenes[J].IEEE Access, 2023,11: 14365-14374.

    [9] [9] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05), 2005,1: 886-893.

    [10] [10] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model[C]//2008IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.

    [11] [11] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

    [12] [12] Girshick R. Fast R-CNN[C]//Proceedingsof theIEEE International Conference on Computer Vision, 2015: 1440-1448.

    [13] [13] REN Shaoqing, HE Kaiming, Ross Girshick, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,39(6): 1137-1149.

    [14] [14] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9): 1904-1916.

    [15] [15] LIU W, Anguelov D, Erhan D, et al. Ssd: single shot multibox detector[C]//Computer Vision–ECCV2016: 14th European Conference, 2016: 21-37.

    [16] [16] FU C Y, LIU W, Ranga A, et al. Dssd: deconvolutional single shot detector[J]. arXiv preprint arXiv: 1701.06659, 2017.

    [17] [17] Jeong J, Park H, Kwak N. Enhancement of SSD by concatenating feature maps for object detection[J]. arXiv preprint arXiv: 1705.09587, 2017.

    [18] [18] LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J]. arXiv preprint arXiv: 1712.00960, 2017.

    [19] [19] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.

    [20] [20] Redmon J, Farhadi A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.

    [21] [21] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.

    [22] [22] Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.

    [23] [23] DING L, XU X, CAO Y, et al. Detection and tracking of infrared small target by jointly using SSD and pipeline filter[J].Digital Signal Processing, 2021,110: 102949.

    [24] [24] WEI J, SU S, ZHAO Z, et al. Infrared pedestrian detection using improved UNet and YOLO through sharing visible light domain information[J].Measurement, 2023,221: 113442.

    [25] [25] Terven Juan, Diana-Margarita Crdova-Esparza, et al. A comprehensive review of yolo architectures in computer vision: from yolov1 to yolov8 and yolo-nas[J].Machine Learning and Knowledge Extraction, 2023,5(4): 1680-1716.

    [26] [26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.

    [27] [27] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.

    [28] [28] GAO S H, CHENG M M, ZHAO K, et al. Res2net: a new multi-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,43(2): 652-662.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Xiaohan, XU Yuanyuan. Infrared Multi-Scale Target Detection Algorithm Based on RCR-YOLO[J]. Infrared Technology, 2025, 47(4): 459

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 29, 2024

    Accepted: May. 13, 2025

    Published Online: May. 13, 2025

    The Author Email: XU Yuanyuan (yyxu@shmtu.edu.cn)

    DOI:

    Topics