Acta Optica Sinica, Volume. 31, Issue 9, 900104(2011)
Breaking Through the Optical Diffraction Limits, Developing the Nano-Optics and Photonics
[1] [1] R. Menon. Towards diffraction-unlimited optical nanopatterning [J]. Optics and Photonics News, 2009, 20(12): 17~18
[2] [2] H. F. Wang, F. X. Gan. New approach to superresolution[J]. Opt. Eng., 2001, 40(5): 851~855
[3] [3] H. F. Wang, L. P. Shi, B. Lukyanchuk et al.. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photon., 2008, 2(8): 501~505
[4] [4] E. Betzig, J. Trautman, R. Wolfe et al.. Near-field magneto-optics and high density data storage[J]. Appl. Phys. Lett.,1992, 61(2): 142~144
[5] [5] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824~830
[6] [6] G. Bouwhuis, J. H. M. Spruit. Optical storage read-out of nonlinear disks[J]. Appl. Opt., 1990, 29(26): 3766~3768
[7] [7] K. Yasuda, M. Ono, K. Aratani et al.. Premastered optical disk by superresolution[J]. Jpn. J. Appl. Phys., 1993, 32(11B): 5210~5213
[8] [8] J. Tominaga, H. Fuji, A. Sato et al.. The near-field super-resolution properties of an antimony thin film[J]. Jpn. J. Appl. Phys. Part 2, 1998, 37(11A): L1323~L1325
[9] [9] J. T. Fourkas, L. J. Li, R. R. Gattass et al.. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910~913
[10] [10] R. R. McLeod, T. F. Scott, B. A. Kowalski et al.. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913~917
[11] [11] R. Menon, T. L. Andrew, H. Y. Tsai. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 2009, 324(5929): 917~921
[12] [12] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt. Lett., 1994, 19(11): 780~782
[13] [13] G. T. Di Francia. Super-gain antennas and optical resolving power[J]. Il Nuovo Cimento (1943-1954), 1952, 9(3): 426~438
[14] [14] Y. Yamanaka, Y. Hirose, H. Fujii et al.. High-density recording by superresolution in an optical disk memory system[J]. Appl. Opt., 1990, 29(20): 3046~3051
[15] [15] H. F. Wang, F. X. Gan. High focal depth with a pure-phase apodizer[J]. Appl. Opt., 2001, 40(31): 5658~5662
[16] [16] H. F. Wang, F. X. Gan. Phase-shifting apodizers for increasing focal depth[J]. Appl. Opt., 2002, 41(25): 5263~5266
[17] [17] X. M. Gao, Z. Fei, W. D. Xu et al.. Focus splitting induced by a pure phase-shifting apodizer[J]. Opt. Commun., 2004, 239(1-3): 55~59
[18] [18] X. M. Gao, Z. Fei, F. Zhang et al.. Tunable focal depth of an apodized focusing optical system[J]. Opt. Eng., 2005, 44(6): 063001
[19] [19] Zhou Changhe, Cao Youyou, Di Caihui. Optical disk pickup head with superresoluion phase plate [P]. China Patent, CN201035986,2008.3.12
[21] [21] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667~669
[22] [22] J. Tominaga, D. Buechel, T. Nakano et al.. Readout characteristics and mechanism of light-scattering-mode super-RENS disks[C]. SPIE, 2000, 4081: 86~94
[23] [23] X. G. Luo, T. Ishihara. Surface plasmon resonant interference nanolithography technique[J]. Appl. Phys. Lett., 2004, 84(23): 4780~4782
[24] [24] X. Zhang, N. Fang, H. Lee et al.. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534~537
[25] [25] W. Srituravanich, L. Pan, Y. Wang et al.. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology, 2008, 3(12): 733~737
[26] [26] J. S. Wei, F. X. Gan. Dynamic readout of subdiffraction-limited pit arrays with a silver superlens[J]. Appl. Phys. Lett., 2005, 87(21): 211101
[27] [27] K. B. Song, J. Lee, J. H. Kim et al.. Direct observation of self-focusing with subdiffraction limited resolution using near-field scanning optical microscope[J]. Phys. Rev. Lett., 2000, 85(18): 3842~3845
[28] [28] T. Nagase, S. Ashida, K. Ichihara. Super-resolution effect of semiconductor-doped glass[J]. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, 1999, 38(3B): 1665~1668
[29] [29] J. S. Wei, J. Liu. Optical nonlinear absorption characteristics of AgInSbTe phase change thin films[J]. J. Appl. Phys., 2009, 106(8): 083112
[30] [30] J. S. Wei, J. Liu, X. B. Jiao. Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics[J]. Appl. Phys. Lett., 2009, 95(24): 241105
[31] [31] M. Frumar, T. Wagner. Proceedings of the 13th International Symposium on Non-Oxide Glasses and New Optical Glasses: preface[J]. J. Non-Cryst. Solids., 2003, 326-327: vii~viii
[32] [32] Dong Xianzi, Chen Weiqiang, Zhao Zhensheng et al.. Femtosecond laser two-photon micro-/nano-fabrication and its applications [J]. Chinese Science Bulletin, 2008, 53(1): 2~13
[33] [33] S. Kawata, H. B. Sun, T. Tanaka et al.. Finer features for functional microdevices-micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412(6848): 697~698
[34] [34] F. X. Zhai, F. Y. Zuo, H. Huang et al.. Optical switch formation in antimony super-resolution mask layers induced by picosecond laser pulses[J]. Chin. Phys. Lett., 2010, 27(1): 014209
[35] [35] J. Tominaga, T. Shima, M. Kuwahara et al.. Ferroelectric catastrophe: beyond nanometre-scale optical resolution[J]. Nanotechnology, 2004, 15(5): 411~415
[36] [36] H. Nagai, A. Yoshikawa, Y. Toyoshima et al.. New application of Se-Ge glasses to silicon microfabrication technology[J]. Appl. Phys. Lett., 1976, 28(3): 145~147
[37] [37] A. Kouchiyama, K. Aratani, Y. Takemotoi et al.. High-resolution blue-laser mastering using an inorganic photoresist[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2003, 42(2B): 769~771
[38] [38] J. S. Wei, A. H. Dun, F. X. Gan. Pattern structures fabricated on ZnS-SiO2/AgOx/ZnS-SiO2 thin film structure by laser direct writing technology[J]. Appl. Phys. A-Mater., 2010, 100(2): 401~407
[39] [39] C. Deng, Y. Geng, Y. Wu. Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium[J]. Appl. Phys. A, 2011, DOI 10.1007/s00339-011-6377-1
[40] [40] X. Y. Gao, X. S. Gan. Modulation of evanescent focus by localized surface plasmons waveguide[J]. Opt. Express, 2009, 17(25): 22726~22734
Get Citation
Copy Citation Text
Gan Fuxi, Wang Yang. Breaking Through the Optical Diffraction Limits, Developing the Nano-Optics and Photonics[J]. Acta Optica Sinica, 2011, 31(9): 900104
Category: Reviews
Received: Jul. 21, 2011
Accepted: --
Published Online: Aug. 31, 2011
The Author Email: Fuxi Gan (fxgan@mail.shcnc.ac.cn)