Chinese Journal of Ship Research, Volume. 20, Issue 2, 366(2025)
Classification and recognition of spatio-temporal behavior of ships based on deep learning of trajectory feature images
[1] ZHENG Y. Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 6, 29(2015).
[2] [2] ZHANG Z Y, NI G X, XU Y G. Ship trajecty prediction based on LSTM neural wk[C]Proceedings of the 5th Infmation Technology Mechatronics Engineering Conference. Chongqing: IEEE, 2020: 13561364.
[9] [9] LAXHAMMAR R, FALKMAN G, SVIESTINS E. Anomaly detection in sea traffic A comparison of the Gaussian mixture model the kernel density estimat[C]Proceedings of the 12th International Conference on Infmation Fusion. Seattle: IEEE, 2009: 756–763.
[11] [11] RISTIC B, LA SCALA B, MELE M, et al. Statistical analysis of motion patterns in AIS data: anomaly detection motion prediction[C]Proceedings of the 11th International Conference on Infmation Fusion. Cologne: IEEE, 2008: 1–7.
[12] HU B F, JIANG X, SOUZA E et al. Identifying fishing activities from AIS data with conditional random fields[J]. Annals of Computer Science and Information Systems, 8, 47-52(2016).
[13] [13] HERRERO D A, PEDROCHE D S, HERRERO J G, et al. AIS trajecty classification based on IMM data[C]Proceedings of the 22th International Conference on Infmation Fusion. Ottawa: IEEE, 2019: 1–8.
[14] [14] ZHONG H Y, SONG X, YANG L. Vessel classification from spacebased AIS data using rom fest[C]Proceedings of the 5th International Conference on Big Data Infmation Analytics. Kunming: IEEE, 2019: 9–12.
[18] [18] JIANG X, DE SOUZA E N, PESARANGHADER A, et al. Trajecty: an embedded GPS trajecty representation f pointbased classification using recurrent neural wks[C]Proceedings of the 27th Annual International Conference on Computer Science Software Engineering. Markham: IBM Cp. , 2017.
[20] OBRADOVIĆ I, MILIČEVIĆ M, ŽUBRINIĆ K. Machine learning approaches to maritime anomaly detection[J]. Naše More, 61, 96-101(2014).
[21] [21] VECASTEELE A, NAPOLI A. An enhanced spatial reasoning ontology f maritime anomaly detection[C]Proceedings of 2012 7th International Conference on System of Systems Engineering. Genova: IEEE, 2012: 1–6.
[22] [22] VECASTEELE A, NAPOLI A. Spatial ontologies f detecting abnmal maritime behaviour[C]Proceedings of the 2012 OceansYeosu. Yeosu: IEEE, 2012: 1−7.
[23] [23] ROY J. Rulebased expert system f maritime anomaly detection[C]Proceedings of SPIE 7666, Senss, Comm, Control, Communications, Intelligence (C3I) Technologies f Homel Security Homel Defense IX. lo: SPIE, 2010: 597−608.
[25] [25] NIKITAKOS N. Real time intelligence of AIS data[C]Proceedings of the Maritime Knowledge Discovery Anomaly Detection Wkshop. Ispra:JRC, 2016: 5−6.
[28] [28] RIVEIRO M, FALKMAN G. The role of visualization interaction in maritime anomaly detection[C]Proceedings of SPIE 7868, Visualization Data Analysis 2011. San Francisco Airpt: SPIE, 2011: 228–239.
[33] [33] GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision, recall Fsce, with implication f evaluation[C]Proceedings of the 27th European Conference on Infmation Retrieval. Santiago de Compostela: Springer, 2005: 345–359.
Get Citation
Copy Citation Text
Yu ZHOU, Liang HUANG, Chunhui ZHOU, Yuanqiao WEN, Yamin HUANG, Jiaci WANG. Classification and recognition of spatio-temporal behavior of ships based on deep learning of trajectory feature images[J]. Chinese Journal of Ship Research, 2025, 20(2): 366
Category: Weapon, Electronic and Information System
Received: May. 23, 2024
Accepted: Sep. 2, 2024
Published Online: May. 15, 2025
The Author Email: