Laser & Optoelectronics Progress, Volume. 55, Issue 12, 121004(2018)

Dense Disparity Map Extraction Method Based on Improved Convolutional Neural Network

Dongzhen Huang1,2, Qin Zhao1,2, Huawei Liu1, Baoqing Li1, and Xiaobing Yuan1、*
Author Affiliations
  • 1 Key Laboratory of Microsystem Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(10)
    Dual pyramid network structure
    Comparison of network structures
    Relationship between error rate and parameters of additional convolutional layers. (a) Error rate with different convolutional kernel sizes; (b) test error with different number of convolutional layers
    Comparison of disparity maps. (a) Signpost 1; (b) fence; (c) car; (d) signpost 2; (e) traffic sign; (f) signpost 3
    Zoomed parts over region marked by box in Fig. 4. (a) Signpost 1; (b) fence; (c) car; (d) signpost 2; (e) traffic sign; (f) signpost 3
    Effect of structure on subjective quality. (a) Left input image; (b) without additional convolutional layers; (c) without dual pyramid structure; (d) default
    • Table 1. Comparison of complexity and accuracy

      View table

      Table 1. Comparison of complexity and accuracy

      ItemMC-CNN-fstProposed network
      3×35×5
      Time consumption /s0.19020.25610.2438
      Test error /%3.0292.7842.795
    • Table 2. Objective index of 10 test images

      View table

      Table 2. Objective index of 10 test images

      ImageMC-CNN-fstProposed (5×5)
      10.8070.807
      24.1803.892
      31.2101.147
      41.2071.117
      58.9608.006
      66.2285.866
      71.5881.475
      80.2930.213
      92.9342.658
      103.0202.877
      Average3.0292.795
    • Table 3. Comparison of complexity

      View table

      Table 3. Comparison of complexity

      ItemMC-CNN-fstProposed(5×5)
      Complexity ofconvolution layers111168221760
      Time consumption /s0.19020.2438
      Whole timeconsumption /s0.40400.4770
    • Table 4. Comparison of different network structures

      View table

      Table 4. Comparison of different network structures

      ItemMC-CNN-fstMC-CNN-fst(1×1)Without additionalconvolutional layersWithout dualpyramid structureDefault
      3 pixel /%3.0293.0173.0452.7572.795
      Time consumption /s0.19020.20810.22510.22520.2438
    Tools

    Get Citation

    Copy Citation Text

    Dongzhen Huang, Qin Zhao, Huawei Liu, Baoqing Li, Xiaobing Yuan. Dense Disparity Map Extraction Method Based on Improved Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 4, 2018

    Accepted: Jun. 8, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Xiaobing Yuan (sinowsn@mail.sim.ac.cn)

    DOI:10.3788/LOP55.121004

    Topics