Acta Optica Sinica, Volume. 41, Issue 22, 2206001(2021)

Single-Frequency Nd∶YAG Crystal-Derived Fiber Laser at 915 nm

Xianbin Shao1...2, Xiaohan Chen1,2, Zhenhua Cong1,2, Zhigang Zhao1,2, Xingyu Zhang1,2, Xian Zhao3, Yongyao Xie1,2, Wei Zhao1,2, Jundu Liu2,3, and Zhaojun Liu12,* |Show fewer author(s)
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Shandong Provincial Key Laboratory for Laser Technologies and Applications, Qingdao, Shandong 266237, China
  • 3Center for Optics Research and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • show less
    References(25)

    [1] Lou Z K, Yang B L, Han K et al. Real-time in situ distributed fiber core temperature measurement in hundred-watt fiber laser oscillator pumped by 915/976 nm LD sources[J]. Scientific Reports, 10, 9006(2020).

    [2] Choung H W, Lee S H, Ham A R et al. Effectiveness of low-level laser therapy with a 915 nm wavelength diode laser on the healing of intraoral mucosal wound: an animal study and a double-blind randomized clinical trial[J]. Medicina, 55, E405(2019).

    [3] Dagnelund D, Huang Y Q, Tu C W et al. Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP[J]. Journal of Applied Physics, 117, 015701(2015).

    [4] Drobizhev M, Makarov N S, Hughes T et al. Resonance enhancement of two-photon absorption in fluorescent proteins[J]. The Journal of Physical Chemistry B, 111, 14051-14054(2007).

    [5] Drobizhev M, Makarov N S, Tillo S E et al. Two-photon absorption properties of fluorescent proteins[J]. Nature Methods, 8, 393-399(2011).

    [7] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [8] Leconte B, Gilles H, Robin T et al. 7.5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser[J]. Optics Express, 26, 10000-10006(2018).

    [9] Bode M, Freitag I, Tünnermann A et al. Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region[J]. Optics Letters, 22, 1220-1222(1997).

    [10] Shen M, Sun R Y, Jin D C et al. Design of 930 nm passive mode-locking Nd-doped all-fiber laser[J]. Chinese Journal of Lasers, 44, 0601006(2017).

    [11] Cook A L, Hendricks H D. Diode-laser-pumped tunable 896-939.5-nm neodymium-doped fiber laser with 43-mW output power[J]. Applied Optics, 37, 3276-3281(1998).

    [12] Fang Q, Xu Y, Fu S J et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 41, 1829-1832(2016).

    [13] Wang Y F, Li X Y, Wu J M et al. Three-level all-fiber laser at 915 nm based on polarization-maintaining Nd 3+-doped silica fiber[J]. Chinese Optics Letters, 18, 011401(2020).

    [14] Fu S J, Zhu X S, Zong J et al. Single-frequency Nd3-doped phosphate fiber laser at 915 nm[J]. Journal of Lightwave Technology, 39, 1808-1813(2021).

    [15] Yoo S, Webb A S, Standish R J et al. Q-switched neodymium-doped Y3Al5O12-based silica fiber laser[J]. Optics Letters, 37, 2181-2183(2012).

    [16] Xie Y Y, Liu Z J, Cong Z H et al. All-fiber-integrated Yb∶YAG-derived silica fiber laser generating 6 W output power[J]. Optics Express, 27, 3791-3798(2019).

    [17] Wan Y, Wen J X, Dong Y H et al. Exceeding 50% slope efficiency DBR fiber laser based on a Yb-doped crystal-derived silica fiber with high gain per unit length[J]. Optics Express, 28, 23771-23783(2020).

    [18] Qian G Q, Wang W L, Tang G W et al. Tm∶YAG ceramic derived multimaterial fiber with high gain per unit length for 2 μm laser applications[J]. Optics Letters, 45, 1047-1050(2020).

    [19] Tang G W, Qian G Q, Lin W et al. Broadband 2 μm amplified spontaneous emission of Ho/Cr/Tm∶YAG crystal derived all-glass fibers for mode-locked fiber laser applications[J]. Optics Letters, 44, 3290-3293(2019).

    [20] Dragic P, Law P C, Ballato J et al. Brillouin spectroscopy of YAG-derived optical fibers[J]. Optics Express, 18, 10055-10067(2010).

    [21] Ballato J, Hawkins T, Foy P et al. On the fabrication of all-glass optical fibers from crystals[J]. Journal of Applied Physics, 105, 053110(2009).

    [22] Arai K, Namikawa H, Kumata K et al. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass[J]. Journal of Applied Physics, 59, 3430-3436(1986).

    [23] Dragic P D, Cavillon M, Ballato J. Materials for optical fiber lasers: a review[J]. Applied Physics Reviews, 5, 041301(2018).

    [24] Li C Z, Jia Z X, Cong Z H et al. Gain characteristics of ytterbium-doped SiO2-Al2O3-Y2O3 fibers[J]. Laser Physics, 29, 055804(2019).

    [25] Wang Y F, Zhang Y M, Cao J K et al. 915 nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @silica glass hybrid fiber for the pure blue fiber laser[J]. Optics Letters, 44, 2153-2156(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xianbin Shao, Xiaohan Chen, Zhenhua Cong, Zhigang Zhao, Xingyu Zhang, Xian Zhao, Yongyao Xie, Wei Zhao, Jundu Liu, Zhaojun Liu. Single-Frequency Nd∶YAG Crystal-Derived Fiber Laser at 915 nm[J]. Acta Optica Sinica, 2021, 41(22): 2206001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Apr. 29, 2021

    Accepted: Jun. 3, 2021

    Published Online: Nov. 17, 2021

    The Author Email: Zhaojun Liu (zhaojunliu@sdu.edu.cn)

    DOI:10.3788/AOS202141.2206001

    Topics