OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 6, 45(2022)

A Lightweight Target Detection Algorithm Based on YOLOv4-GC

YU Yao
Author Affiliations
  • [in Chinese]
  • show less
    References(20)

    [1] [1] Hu Q, Zhai L. RGB-D image multi-target detection method based on 3D DSF R-CNN[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(8): 1954026.

    [2] [2] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 779-788.

    [5] [5] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.

    [6] [6] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2020.

    [7] [7] Jocher G, Nishimura K, Mineeva T, et al. Yolov5[J]. Code repository https://github. com/ultralytics/yolov5, 2020.

    [10] [10] Yu J, Zhang W. Face mask wearing detection algorithm based on improved YOLO-v4[J]. Sensors, 2021, 21(9): 3263.

    [11] [11] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 1251-1258.

    [12] [12] Gholami A, Kwon K, Wu B, et al. Squeezenext: Hardware-aware neural network design[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 1638-1647.

    [13] [13] Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.

    [14] [14] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv: 1602.07360, 2016.

    [15] [15] Wang H, Bhaskara V, Levinshtein A, et al. Efficient super-resolution using mobilenetv3[C]. European Conference on Computer Vision. Springer, Cham, 2020: 87-102.

    [16] [16] Wang C Y, Bochkovskiy A, Liao H Y M. Scaled-yolov4: Scaling cross stage partial network[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13029-13038.

    [17] [17] Jiang Z, Zhao L, Li S, et al. Real-time object detection method based on improved YOLOv4-tiny[J]. arXiv preprint arXiv:2011.04244, 2020.

    [18] [18] Harjoseputro Y, Yuda I, Danukusumo K P. MobileNets: Efficient convolutional neural network for identification of protected birds[J]. IJASEIT (International Journal on Advanced Science, Engineering and Information Technology), 2020, 10(6): 2290-2296.

    [19] [19] Li Yuhuan, Wang Jie, Lu Li, et al. A lightweight real-time target detection model for remote sensing images[J]. Advances in Lasers and Optoelectronics, 2021, 58(16): 1615007.

    [20] [20] Kuznetsova A, Maleva T, Soloviev V. Detecting apples in orchards using YOLOv3[J]. 2020, 12249: 923-934.

    [21] [21] Han G, He M, Zhao F, et al. Insulator detection and damage identification based on improved lightweight YOLOv4 network[J]. Energy Reports, 2021, (7): 187-197.

    [22] [22] HU J, LI S, GANG S, et al. Squeeze-and-E xcitation Networks [J]. IEEE Transactions on Patte rn Analysis and Machine Intelligence, 2018, 42(8): 2011-2023.

    Tools

    Get Citation

    Copy Citation Text

    YU Yao. A Lightweight Target Detection Algorithm Based on YOLOv4-GC[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(6): 45

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 16, 2022

    Accepted: --

    Published Online: Jan. 16, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics