Spectroscopy and Spectral Analysis, Volume. 41, Issue 10, 3220(2021)

Cabernet Gernischt Maturity Determination Based on Near-Ground Multispectral Figures by Using UAVs

Sheng-hui YANG*, Yong-jun ZHENG*;, Xing-xing LIU*;, Tian-gang ZHANG, Xiao-shuan ZHANG, and Li-ming XU
Author Affiliations
  • College of Engineering, China Agricultural University, Beijing 100083, China
  • show less
    Figures & Tables(13)
    The acquisition system based on a multispectral camera(a): The composition of the acquisition system; (b): DJI Phantom; (c): ADC Micro1: DJI Phantom, a quad-rotor UAV; 2: ADC Micro, a multispectral camera; 3: an SD card with 16G storage; 4: Computer
    The acquisition of multispectral images in fields(a): Experimental site; (b): Sampling scheme
    The acquired multispectral images(a): An image example (1); (b): An image example (2);(c): An image example (3); (d): An image example (4)
    The examples of the images with R, G and NIR components processed by PixelWrench2 x64(a): The image with R component;(b): The image with G component;(c): The image with Near-Infrared (NIR) conponent
    The results of R, G and NIR components(a): R, G and NIR components in local areas;(b): R, G and NIR components in entire areas
    The portable sugar meter, PAL-1, and its real measurement(a): A portable sugar meter, PAL-1;(b): Measuring total sugar of grape juice by using PAL-1
    The changing relation between each component and date(a): The changing relation between R component and date; (b): The changing relation between G component and date;(c): The changing relation between NIR component and date
    The regression modelling between the local R component of the multispectral images and total sugar(a): The linear model between the local R component of the multispectral images and total sugar;(b): The logarithmic model between the local R component of the multispectral images and total sugar
    • Table 1. The component results of local and entire areas

      View table
      View in Article

      Table 1. The component results of local and entire areas

      日期局部R
      分量
      局部G
      分量
      局部NIR
      分量
      整体R
      分量
      整体G
      分量
      整体NIR
      分量
      检测
      序数
      2016.9.246.552.3163.87.044.5136.71
      2016.9.263.848140.05.440.8113.82
      2016.9.288.847.8156.712.239.8123.03
      2016.9.308.350.8149.510.041.2117.34
      2016.10.310.253.8161.78.340.0123.35
      2016.10.514.747.4148.912.136.0113.36
      2016.10.816.561.7144.316.049.7110.87
      2016.10.1029.063.3135.328.045.591.08
      2016.10.1232.681.6128.427.655.6128.49
    • Table 2. The total sugar of grape juice of the model set

      View table
      View in Article

      Table 2. The total sugar of grape juice of the model set

      日期总糖含量/%检测序数
      2016.9.2418.41
      2016.9.2617.12
      2016.9.2819.93
      2016.9.3019.74
      2016.10.319.95
      2016.10.520.86
      2016.10.821.67
      2016.10.1022.08
      2016.10.1221.99
    • Table 3. The regression of each colour component

      View table
      View in Article

      Table 3. The regression of each colour component

      颜色分量回归方程调整后R2Fp-value显著性
      局部R分量y=3.363x-2.3380.81536.2431 15.314 44×10-4*****
      整体R分量y=2.665x+0.7420.721 8321.759 510.002 3***
      局部G分量y=3.125x+40.6750.532 810.123 250.015 45**
      整体G分量y=1.218x+37.5860.2153.192 520.117 13-
      局部NIRy=-3.019x+162.7140.406 136.470 90.038 45*
      整体NIRy=-2.167x+128.3440.099 21.881 030.212 56-
    • Table 4. The results of the regression analysis between the local R component of the multispectral images and total sugar

      View table
      View in Article

      Table 4. The results of the regression analysis between the local R component of the multispectral images and total sugar

      拟合方式拟合公式调整后R2Fp-value显著性水平备注
      线性拟合y=0.140 1x+18.1150.694 1919.159 760.003 25***80%数据集
      对数拟合y=22.194-6.251+x7.4062.2650.970 6211 522.402 655.124 07×10-10*****80%数据集
    • Table 5. The comparison between the total sugar of the validation set and that of the model prediction results

      View table
      View in Article

      Table 5. The comparison between the total sugar of the validation set and that of the model prediction results

      日期多光谱
      图像R
      分量
      模型预测
      总糖含量
      /%
      实际检测
      总糖含量
      /%
      误差
      /%
      2016年9月24日5.718.218.4-1.09
      2016年9月26日4.017.217.1+0.58
      2016年9月28日9.720.019.9+0.50
      2016年9月30日11.720.619.7+4.57
      2016年10月3日8.319.519.9-2.01
      2016年10月5日11.320.520.8-1.44
      2016年10月8日16.021.321.6-1.39
      2016年10月10日31.221.922.0-0.45
      2016年10月12日31.522.021.9+0.46
    Tools

    Get Citation

    Copy Citation Text

    Sheng-hui YANG, Yong-jun ZHENG, Xing-xing LIU, Tian-gang ZHANG, Xiao-shuan ZHANG, Li-ming XU. Cabernet Gernischt Maturity Determination Based on Near-Ground Multispectral Figures by Using UAVs[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3220

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 12, 2020

    Accepted: --

    Published Online: Oct. 29, 2021

    The Author Email: Sheng-hui YANG (yshgxy@cau.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2021)10-3220-07

    Topics