Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 12, 1614(2022)

Action recognition algorithm based on multi-scale and multi-branch features

Lei ZHANG1,2 and Guang-liang HAN1、*
Author Affiliations
  • 1Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Acadamy of Sciences,Changchun 130033,China
  • 2University of Chinese Acadamy of Sciences,Beijing 100049,China
  • show less
    Figures & Tables(17)
    Feature enhancement processing methods
    Human skeleton structure and number
    Original and improved formats for input
    Structure diagram of tree structure skeleton
    Structure diagram of multi-scale temporal convolution
    Division principle of distance partitioning
    Visualization results of adjacency matrix
    Structure image of multi-scale spatial-temporal convolution
    Schematic diagram of network structure
    Confusion matrix under NTU RGB-D 60 dataset
    • Table 1. Network parameter table of multi-scale convolution

      View table
      View in Article

      Table 1. Network parameter table of multi-scale convolution

      Number of layersModule nameSizeStepInput and output
      1Conv11×116,36
      2Conv_gcn3×3136,72
      Conv_tcn1×1172,24
      5×1224,24
      3Conv_gcn3×3172,72
      Conv_tcn1×1172,24
      5×1124,24
      4Conv_gcn3×3172,36
      Conv_tcn1×1136,12
      5×1112,12
      5Conv_gcn3×31108,192
      Conv_tcn1×11192,64
      5×1264,64
      6,7Conv_gcn3×31192,192
      Conv_tcn1×11192,64
      5×1264,64
      8Conv_gcn3×31192,384
      Conv_tcn1×11384,128
      5×11128,128
      9,10Conv_gcn3×31384,384
      Conv_tcn1×11384,128
      5×12128,128
      11FC--384,60
    • Table 2. Accuracy of different feature enhancement method on NTU RGB-D 60 dataset

      View table
      View in Article

      Table 2. Accuracy of different feature enhancement method on NTU RGB-D 60 dataset

      数据归一化/%SavGol滤波/%坐标转换/%插帧/%深度优先树遍历/%应用所有方法的特征增强/%
      Cross-view(CV)89.390.192.190.592.695.1
    • Table 3. Accuracy of different feature on NTU RGB-D 60 dataset

      View table
      View in Article

      Table 3. Accuracy of different feature on NTU RGB-D 60 dataset

      Bone length+Joints/%Bone length+Velocities/%Bone length+Bone angle/%同时输入三种特征/%
      CV93.893.092.895.1
    • Table 4. Accuracy of different feature fusion location on NTU RGB-D 60 dataset

      View table
      View in Article

      Table 4. Accuracy of different feature fusion location on NTU RGB-D 60 dataset

      k=1k=2k=3k=4
      CV92.8%94.5%95.1%94.1%
    • Table 5. Accuracy of different temporal convolution kernel on NTU RGB-D 60 dataset

      View table
      View in Article

      Table 5. Accuracy of different temporal convolution kernel on NTU RGB-D 60 dataset

      m=3m=5m=7m=9
      CV94.5%95.1%94.7%93.4%
    • Table 6. Accuracy of different action recognition methods on NTU RGB-D 60 dataset

      View table
      View in Article

      Table 6. Accuracy of different action recognition methods on NTU RGB-D 60 dataset

      MethodCross-subject/%Cross-view/%
      TCN1774.383.1
      Ind-RNN[18]81.888.0
      ST-GCN1281.588.3
      HCN886.591.1
      AS-GCN1386.894.2
      3SCNN1988.693.7
      SGN2086.694.3
      PR-GCN2185.291.7
      PeGCN2285.693.4
      Ours89.695.1
    • Table 7. Accuracy of different action recognition methods on NTU RGB-D 120 dataset

      View table
      View in Article

      Table 7. Accuracy of different action recognition methods on NTU RGB-D 120 dataset

      MethodCross-subject/%Cross-setup/%
      Part-aware LSTM1125.526.3
      TSRJI2367.962.8
      3SCNN1981.281.9
      3s RA-GCN2481.182.7
      Gimme Signals2570.871.6
      SGN2079.281.5
      Ours84.186.0
    Tools

    Get Citation

    Copy Citation Text

    Lei ZHANG, Guang-liang HAN. Action recognition algorithm based on multi-scale and multi-branch features[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(12): 1614

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 25, 2022

    Accepted: --

    Published Online: Nov. 30, 2022

    The Author Email: Guang-liang HAN (hangl@ciomp.ac.cn)

    DOI:10.37188/CJLCD.2022-0176

    Topics