Chinese Journal of Lasers, Volume. 51, Issue 3, 0307201(2024)
NIR‑
[1] Liu J H, Yang Y Q, Ma R et al. Research progress of organic NIR-Ⅱ fluorescent probes[J]. Chinese Journal of Lasers, 50, 2107101(2023).
[2] Feng Z, Qian J. Advances on in vivo fluorescence bioimaging in the second near-infrared window[J]. Laser & Optoelectronics Progress, 59, 0617001(2022).
[3] Wei Z W, Yang S, Wu M et al. Recent progress in near-infrared-Ⅱ fluorescence imaging probes for fluorescence surgical navigation[J]. Chinese Journal of Lasers, 49, 0507102(2022).
[4] Welsher K, Liu Z, Sherlock S P et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 4, 773-780(2009).
[5] Bruns O T, Bischof T S, Harris D K et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 1, 56(2017).
[6] Ma Z R, Wang F F, Zhong Y T et al. Cross-link-functionalized nanoparticles for rapid excretion in nanotheranostic applications[J]. Angewandte Chemie (International Ed. in English), 59, 20552-20560(2020).
[7] Zhong Y T, Ma Z R, Wang F F et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared‑Ⅱb rare-earth nanoparticles[J]. Nature Biotechnology, 37, 1322-1331(2019).
[8] Fan Y, Wang P Y, Lu Y Q et al. Lifetime-engineered NIR‑Ⅱ nanoparticles unlock multiplexed in vivo imaging[J]. Nature Nanotechnology, 13, 941-946(2018).
[9] Liu S J, Ou H L, Li Y Y et al. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR‑Ⅱa fluorescence imaging[J]. Journal of the American Chemical Society, 142, 15146-15156(2020).
[10] Xu R T, Jiao D, Long Q et al. Highly bright aggregation-induced emission nanodots for precise photoacoustic/NIR‑Ⅱ fluorescence imaging-guided resection of neuroendocrine neoplasms and sentinel lymph nodes[J]. Biomaterials, 289, 121780(2022).
[11] Antaris A L, Chen H, Cheng K et al. A small-molecule dye for NIR-Ⅱ imaging[J]. Nature Materials, 15, 235-242(2016).
[12] Han T Y, Wang Y J, Ma S J et al. Near-infrared carbonized polymer dots for NIR-Ⅱ bioimaging[J]. Advanced Science, 9, e2203474(2022).
[13] Liu H L, Hong G S, Luo Z T et al. Atomic-precision gold clusters for NIR‑Ⅱ imaging[J]. Advanced Materials, 31, e1901015(2019).
[14] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/Ⅱ windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).
[15] Yang G, Mu X, Pan X X et al. Ligand engineering of Au44 nanoclusters for NIR‑Ⅱ luminescent and photoacoustic imaging-guided cancer photothermal therapy[J]. Chemical Science, 14, 4308-4318(2023).
[16] Huang Y, Chen K, Liu L et al. Single atom-engineered NIR‑Ⅱ gold clusters with ultrahigh brightness and stability for acute kidney injury[J]. Small, 19, e2300145(2023).
[17] Li Q, Zeman C J, Ma Z R et al. Bright NIR‑Ⅱ photoluminescence in rod-shaped icosahedral gold nanoclusters[J]. Small, 17, e2007992(2021).
[18] Yu Z X, Musnier B, Wegner K D et al. High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters[J]. ACS Nano, 14, 4973-4981(2020).
[19] Li D L, Liu Q, Qi Q R et al. Gold nanoclusters for NIR‑Ⅱ fluorescence imaging of bones[J]. Small, 16, e2003851(2020).
[20] Dan Q, Yuan Z, Zheng S et al. Gold nanoclusters-based NIR-Ⅱ photosensitizers with catalase-like activity for boosted photodynamic therapy[J]. Pharmaceutics, 14, 1645(2022).
[21] Song X R, Zhu W, Ge X G et al. A new class of NIR‑Ⅱ gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging[J]. Angewandte Chemie (International Ed. in English), 60, 1306-1312(2021).
[22] Kong Y F, Santos-Carballal D, Martin D et al. A NIR‑Ⅱ‑ emitting gold nanocluster-based drug delivery system for smartphone-triggered photodynamic theranostics with rapid body clearance[J]. Materials Today, 51, 96-107(2021).
[23] Baghdasaryan A, Wang F F, Ren F Q et al. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR‑Ⅱ fluorescence imaging in preclinical cancer models[J]. Nature Communications, 13, 5613(2022).
[24] Krishnamurthi R V, Feigin V L, Forouzanfar M H et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010[J]. The Lancet. Global Health, 1, e259-e281(2013).
[25] Pasterkamp G, den Ruijter H M, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease[J]. Nature Reviews Cardiology, 14, 21-29(2017).
[26] Cheng S Y, Hang C, Ding L et al. Electronic blood vessel[J]. Matter, 3, 1664-1684(2020).
[27] Hong G S, Diao S, Chang J L et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 8, 723-730(2014).
[28] Goldfarb J W, Weber J. Trends in cardiovascular MRI and CT in the U.S. medicare population from 2012 to 2017[J]. Radiology: Cardiothoracic Imaging, 3, e200112(2021).
[29] Nishimiya K, Matsumoto Y, Shimokawa H. Recent advances in vascular imaging[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, e313-e321(2020).
[30] Zhou T Y, Zha M L, Tang H et al. Controlling NIR-Ⅱ emitting gold organic/inorganic nanohybrids with tunable morphology and surface PEG density for dynamic visualization of vascular dysfunction[J]. Chemical Science, 14, 8842-8849(2023).
[31] Morton D L, Wen D R, Wong J H et al. Technical details of intraoperative lymphatic mapping for early stage melanoma[J]. Archives of Surgery, 127, 392-399(1992).
[32] Faries M B, Testori A A E, Gershenwald J E. Sentinel node biopsy for primary cutaneous melanoma[J]. Annals of Oncology, 32, 290-292(2021).
[33] Dogan N U, Dogan S, Favero G et al. The basics of sentinel lymph node biopsy: anatomical and pathophysiological considerations and clinical aspects[J]. Journal of Oncology, 2019, 3415630(2019).
[34] Moncayo V M, Aarsvold J N, Alazraki N P. Lymphoscintigraphy and sentinel nodes[J]. Journal of Nuclear Medicine, 56, 901-907(2015).
[35] Chahid Y, Qiu X B, van de Garde E M W et al. Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients[J]. EJNMMI Research, 11, 54(2021).
[36] Ballardini B, Santoro L, Sangalli C et al. The indocyanine green method is equivalent to the 99mTc-labeled radiotracer method for identifying the sentinel node in breast cancer: a concordance and validation study[J]. European Journal of Surgical Oncology (EJSO), 39, 1332-1336(2013).
[37] Kim J H, Ku M, Yang J et al. Recent developments of ICG-guided sentinel lymph node mapping in oral cancer[J]. Diagnostics, 11, 891(2021).
[38] Pang Z Y, Yan W X, Yang J E et al. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis[J]. ACS Nano, 16, 16019-16037(2022).
[39] Zhou C, Long M, Qin Y P et al. Luminescent gold nanoparticles with efficient renal clearance[J]. Angewandte Chemie (International Ed. in English), 50, 3168-3172(2011).
[40] Liu J B, Yu M X, Zhou C et al. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance[J]. Journal of the American Chemical Society, 135, 4978-4981(2013).
[41] Zhang C L, Li C, Liu Y L et al. Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors[J]. Advanced Functional Materials, 25, 1314-1325(2015).
[42] Liang M, Hu Q, Yi S X et al. Development of an Au nanoclusters based activatable nanoprobe for NIR‑Ⅱ fluorescence imaging of gastric acid[J]. Biosensors and Bioelectronics, 224, 115062(2023).
[43] Wang W L, Kong Y F, Jiang J et al. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging[J]. Angewandte Chemie (International Ed. in English), 59, 22431-22435(2020).
[44] Johnstone T C, Suntharalingam K, Lippard S J. The next generation of platinum drugs: targeted Pt(Ⅱ) agents, nanoparticle delivery, and Pt(Ⅳ) prodrugs[J]. Chemical Reviews, 116, 3436-3486(2016).
[45] He S S, Li C, Zhang Q F et al. Tailoring platinum(Ⅳ) amphiphiles for self-targeting all-in-one assemblies as precise multimodal theranostic nanomedicine[J]. ACS Nano, 12, 7272-7281(2018).
[46] Cong Y W, Xiao H H, Xiong H J et al. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer[J]. Advanced Materials, 30, 1706220(2018).
[47] Kurokawa H, Ishida T, Nishio K et al. γ‑glutamylcysteine synthetase gene overexpression results in increased activity of the ATP-dependent glutathione S-conjugate export pump and cisplatin resistance[J]. Biochemical and Biophysical Research Communications, 216, 258-264(1995).
[48] Kelland L. The resurgence of platinum-based cancer chemotherapy[J]. Nature Reviews Cancer, 7, 573-584(2007).
[49] Goto S, Iida T, Cho S et al. Overexpression of glutathione S-transferase π enhances the adduct formation of cisplatin with glutathione in human cancer cells[J]. Free Radical Research, 31, 549-558(1999).
[50] Ling X, Chen X, Riddell I A et al. Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(Ⅳ) prodrugs and reversal of cisplatin resistance[J]. Nano Letters, 18, 4618-4625(2018).
[51] Yang Y Y, Yu Y J, Chen H et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/Ⅱ imaging and glutathione scavenging[J]. ACS Nano, 14, 13536-13547(2020).
[52] Wang Y, Qi K, Yu S S et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2[J]. Nano-Micro Letters, 11, 102(2019).
[53] Yan R Q, Hu Y X, Liu F et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly[J]. Journal of the American Chemical Society, 141, 10331-10341(2019).
[54] Sun W J, Luo L, Feng Y S et al. Aggregation-induced emission gold clustoluminogens for enhanced low-dose X-ray-induced photodynamic therapy[J]. Angewandte Chemie (International Ed. in English), 59, 9914-9921(2020).
[55] Li Z F, Wang S L, Zhao J J et al. Gold nanocluster encapsulated nanorod for tumor microenvironment simultaneously activated NIR‑Ⅱ photoacoustic/photothermal imaging and cancer therapy[J]. Advanced Therapeutics, 6, 2200350(2023).
[56] Yang G, Pan X X, Feng W B et al. Engineering Au44 nanoclusters for NIR‑Ⅱ luminescence imaging-guided photoactivatable cancer immunotherapy[J]. ACS Nano, 17, 15605-15614(2023).
[57] Fan W P, Bu W B, Shen B et al. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J]. Advanced Materials, 27, 4155-4161(2015).
[58] Gordijo C R, Abbasi A Z, Ali Amini M et al. Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment[J]. Advanced Functional Materials, 25, 1858-1872(2015).
[59] Wang Z Z, Zhang Y, Ju E G et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors[J]. Nature Communications, 9, 3334(2018).
[60] Lin L S, Song J B, Song L et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy[J]. Angewandte Chemie International Edition, 57, 4902-4906(2018).
[61] He T, Qin X L, Jiang C et al. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy[J]. Theranostics, 10, 2453-2462(2020).
[62] Zhao H, Wang H, Li H R et al. Magnetic and near-infrared‑Ⅱ fluorescence Au-Gd nanoclusters for imaging-guided sensitization of tumor radiotherapy[J]. Nanoscale Advances, 4, 1815-1826(2022).
[63] Ding B B, Zheng P, Ma P A et al. Manganese oxide nanomaterials: synthesis, properties, and theranostic applications[J]. Advanced Materials, 32, 1905823(2020).
[64] Chen Q, Feng L Z, Liu J J et al. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy[J]. Advanced Materials, 28, 7129-7136(2016).
[65] Fu L H, Hu Y R, Qi C et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy[J]. ACS Nano, 13, 13985-13994(2019).
[66] He T, Jiang C, He J et al. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR‑Ⅱ photothermal-chemodynamic therapy[J]. Advanced Materials, 33, 2008540(2021).
[67] Lillo C R, Calienni M N, Rivas Aiello B et al. BSA-capped gold nanoclusters as potential theragnostic for skin diseases: photoactivation, skin penetration, in vitro, and in vivo toxicity[J]. Materials Science and Engineering: C, 112, 110891(2020).
[68] Sun S, Liu H L, Xin Q et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion[J]. Nano Letters, 21, 2562-2571(2021).
[69] Zhou R B, Ohulchanskyy T Y, Xu Y J et al. Tumor-microenvironment-activated NIR‑Ⅱ nanotheranostic platform for precise diagnosis and treatment of colon cancer[J]. ACS Applied Materials & Interfaces, 14, 23206-23218(2022).
[70] Jana D, He B, Chen Y et al. A defect-engineered nanozyme for targeted NIR‑Ⅱ photothermal immunotherapy of cancer[J]. Advanced Materials, 2206401(2022).
[71] Moskalevska I, Faure V, Haye L et al. Intracellular accumulation and immunological response of NIR-Ⅱ polymeric nanoparticles[J]. International Journal of Pharmaceutics, 630, 122439(2023).
[72] Huang J G, Lü Y, Li J C et al. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury[J]. Angewandte Chemie (International Ed. in English), 58, 17796-17804(2019).
[73] Zhang X, Chen Y, He H S et al. ROS/RNS and base dual activatable merocyanine-based NIR‑Ⅱ fluorescent molecular probe for in vivo biosensing[J]. Angewandte Chemie International Edition, 60, 26337-26341(2021).
[74] Yu M X, Zhou J C, Du B J et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles[J]. Angewandte Chemie International Edition, 55, 2787-2791(2016).
[75] Huang J G, Xie C, Zhang X D et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction[J]. Angewandte Chemie (International Ed. in English), 58, 15120-15127(2019).
[76] Ma H Z, Zhang X N, Liu L et al. Bioactive NIR-Ⅱ gold clusters for three-dimensional imaging and acute inflammation inhibition[J]. Science Advances, 9, eadh7828(2023).
[77] van Elsland D, Neefjes J. Bacterial infections and cancer[J]. EMBO Reports, 19, e46632(2018).
[78] Zheng K Y, Setyawati M I, Leong D T et al. Observing antimicrobial process with traceable gold nanoclusters[J]. Nano Research, 14, 1026-1033(2021).
[79] Katla S K, Zhang J, Castro E et al. Atomically precise Au25(SG)18 nanoclusters: rapid single-step synthesis and application in photothermal therapy[J]. ACS Applied Materials & Interfaces, 10, 75-82(2018).
[80] Zhang X D, Chen J, Luo Z T et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy[J]. Advanced Healthcare Materials, 3, 133-141(2014).
[81] Xu J, Yu M X, Peng C Q et al. Dose dependencies and biocompatibility of renal clearable gold nanoparticles: from mice to non-human primates[J]. Angewandte Chemie (International Ed. in English), 57, 266-271(2018).
[82] Zhang X D, Luo Z T, Chen J et al. Storage of gold nanoclusters in muscle leads to their biphasic in vivo clearance[J]. Small, 11, 1683-1690(2015).
[83] Yan R J, Sun S, Yang J et al. Nanozyme-based bandage with single-atom catalysis for brain trauma[J]. ACS Nano, 13, 11552-11560(2019).
[84] Mu X Y, Wang J Y, Li Y H et al. Redox trimetallic nanozyme with neutral environment preference for brain injury[J]. ACS Nano, 13, 1870-1884(2019).
[85] Hao W T, Liu S J, Liu H L et al. In vivo neuroelectrophysiological monitoring of atomically precise Au25 clusters at an ultrahigh injected dose[J]. ACS Omega, 5, 24537-24545(2020).
Get Citation
Copy Citation Text
Siyu Li, Fangzheng Tian, Duyang Gao, Dehong Hu, Hairong Zheng, Zonghai Sheng, Shenghong Ju. NIR‑
Category: Optical Diagnostics and Therapy
Received: Oct. 31, 2023
Accepted: Dec. 11, 2023
Published Online: Feb. 19, 2024
The Author Email: Sheng Zonghai (zh.sheng@siat.ac.cn), Ju Shenghong (jsh@seu.edu.cn)
CSTR:32183.14.CJL231341