Frontiers of Optoelectronics, Volume. 13, Issue 4, 409(2020)
Ripening-resistance of Pd on TiO2(110) from first-principles kinetics
[1] [1] Diebold U. The surface science of titanium dioxide. Surface Science Reports, 2003, 48(5-8): 53-229
[2] [2] Chen M S, Goodman DW. The structure of catalytically active gold on titania. Science, 2004, 306(5694): 252-255
[3] [3] Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647-1650
[4] [4] Fu Q,Wagner T. Interaction of nanostructured metal overlayers with oxide surfaces. Surface Science Reports, 2007, 62(11): 431-498
[5] [5] Diebold U, Pan J-M, Madey T E. Ultrathin metal film growth on TiO2(110): an overview. Surface Science, 1995, 331-333(Part B): 845-854
[6] [6] Hu M, Noda S, Komiyama H. A new insight into the growth mode of metals on TiO2(110). Surface Science, 2002, 513(3): 530-538
[7] [7] Persaud R, Madey T E. Chapter 11 Growth, structure and reactivity of ultrathin metal films on TiO2 surfaces. In: King D A, Woodruff D P, eds. Growth and Properties of Ultrathin Epitaxial Layers. The Chemical Physics of Solid Surfaces, 1997, 8: 407-447
[8] [8] Park J B, Ratliff J S, Ma S, Chen D A. In situ scanning tunneling microscopy studies of bimetallic cluster growth: Pt-Rh on TiO2(110). Surface Science, 2006, 600(14): 2913-2923
[9] [9] ei Y, Liu H, Xiao W. First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell. Modelling and Simulation in Materials Science and Engineering, 2010, 18(2): 025004
[10] [10] Bartholomew C H. Mechanisms of catalyst deactivation. Applied Catalysis A, General, 2001, 212(1-2): 17-60
[11] [11] Moulijn J A, van Diepen A E, Kapteijn F. Catalyst deactivation: is it predictable? what to do? Applied Catalysis A, General, 2001, 212 (1-2): 3-16
[12] [12] Forzatti P, Lietti L. Catalyst deactivation. Catalysis Today, 1999, 52 (2-3): 165-181
[13] [13] McCarty J G, Gusman M, Lowe D M, Hildenbrand D L, Lau K N. Stability of supported metal and supported metal oxide combustion catalysts. Catalysis Today, 1999, 47(1-4): 5-17
[14] [14] Bugyi L, óvári L, Kónya Z. The formation and stability of Rh nanostructures on TiO2(110) surface and TiOx encapsulation layers. Applied Surface Science, 2013, 280: 60-66
[15] [15] Piwoński I, Spilarewicz-Stanek K, Kisielewska A, K?dzio?a K, Cichomski M, Ginter J. Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings. Applied Surface Science, 2016, 373: 38-44
[16] [16] Madej E, Spiridis N, Socha R P, Wolanin B, Korecki J. The nucleation, growth and thermal stability of iron clusters on a TiO2(110) surface. Applied Surface Science, 2017, 416: 144-151
[17] [17] Jak M J J, Konstapel C, van Kreuningen A, Verhoeven J, Frenken J W M. Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2(110). Surface Science, 2000, 457(3): 295-310
[18] [18] Stone P, Bennett R A, Poulston S, Bowker M. Scanning tunnelling microscopy and Auger electron spectroscopy study of Pd on TiO2(110). Surface Science, 1999, 433-435(2): 501-505
[19] [19] Stone P, Poulston S, Bennett R A, Bowker M. Scanning tunnelling microscopy investigation of sintering in a model supported catalyst: nanoscale Pd on TiO2(110). Chemical Communications, 1998, 13: 1369-1370
[20] [20] Howard A, Mitchell C E J, Egdell R G. Real time STM observation of Ostwald ripening of Pd nanoparticles on TiO2(110) at elevated temperature. Surface Science, 2002, 515(2 - 3): L504-L508
[21] [21] Su Y Q, Liu J X, Filot I A W, Hensen E J M. Theoretical study of ripening mechanisms of Pd clusters on ceria. Chemistry of Materials, 2017, 29(21): 9456-9462
[22] [22] Hansen T W, Delariva A T, Challa S R, Datye A K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Accounts of Chemical Research, 2013, 46(8): 1720-1730
[23] [23] Campbell C T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Accounts of Chemical Research, 2013, 46(8): 1712-1719
[24] [24] Hu S, Li W X. Influence of particle size distribution on lifetime and thermal stability of Ostwald ripening of supported particles. ChemCatChem, 2018, 10(13): 2900-2907
[25] [25] Wynblatt P, Gjostein N A. Supported metal crystallites. Progress in Solid State Chemistry, 1975, 9: 21-58
[26] [26] Kang S B, Lim J B, Jo D, Nam I S, Cho B K, Hong S B, Kim C H, Oh S H. Ostwald-ripening sintering kinetics of Pd-based three-way catalyst: importance of initial particle size of Pd. Chemical Engineering Journal, 2017, 316: 631-644
[27] [27] Goldsmith B R, Sanderson E D, Ouyang R, Li W X. CO- and NOinduced disintegration and redispersion of three-way catalysts rhodium, palladium, and platinum: an ab initio thermodynamics study. Journal of Physical Chemistry C, 2014, 118(18): 9588-9597
[28] [28] Ouyang R, Liu J X, Li W X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. Journal of the American Chemical Society, 2013, 135 (5): 1760-1771
[29] [29] Hu S, Li W X. Theoretical investigation of metal-support interactions on ripening kinetics of supported particles. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2018, 4(5): 510-517
[30] [30] Wan Q, Hu S, Dai J, Chen C, Li W X. First-principles kinetic study for Ostwald ripening of late transition metals on TiO2(110). Journal of Physical Chemistry C, 2019, 123(2): 1160-1169
[31] [31] Vitos L, Ruban A V, Skriver H L, Kollár J. The surface energy of metals. Surface Science, 1998, 411(1 - 2): 186-202
[32] [32] Zhao C, Wan Q, Dai J, Zhang J, Wu F, Wang S, Long H, Chen J, Chen C, Chen C. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation. Frontiers of Optoelectronics, 2017, 10 (4): 363-369
[33] [33] Parker S C, Campbell C T. Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO2(110). Physical Review B, 2007, 75(3): 035430
[34] [34] Johnson C A. Generalization of the Gibbs-Thomson equation. Surface Science, 1965, 3(5): 429-444
[35] [35] Parker S C, Campbell C T. Reactivity and sintering kinetics of Au/ TiO2(110) model catalysts: particle size effects. Topics in Catalysis, 2007, 44(1-2): 3-13
[36] [36] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186
[37] [37] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15-50
[38] [38] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B, 1993, 47(1): 558-561
[39] [39] Feynman R P. Forces in molecules. Physical Review, 1939, 56(4): 340-343
[40] [40] Hammer B, Hansen L B, N?rskov J K. Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals. Physical Review B, 1999, 59(11): 7413-7421
[41] [41] Grant F A. Properties of rutile (titanium dioxide). Reviews of Modern Physics, 1959, 31(3): 646-674
[42] [42] Kim H Y, Lee H M, Pala R G S, Shapovalov V, Metiu H. CO oxidation by rutile TiO2(110) doped with V, W, Cr, Mo, and Mn. Journal of Physical Chemistry C, 2008, 112(32): 12398-12408
[43] [43] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978-9985
[44] [44] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901-9904
[45] [45] Overbury S H, Bertrand P A, Somorjai G A. Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chemical Reviews, 1975, 75(5): 547-560
[46] [46] Zhao W, Lin H, Li Y, Zhang Y, Huang X, Chen W. Growth mechanism of palladium clusters on rutile TiO2(110) surface. Journal of Natural Gas Chemistry, 2012, 21(5): 544-555
[47] [47] Sanz J F, Márquez A. Adsorption of Pd atoms and dimers on the TiO2(110) surface: a first principles study. Journal of Physical Chemistry C, 2007, 111(10): 3949-3955
[48] [48] Kittel C. Introduction to Solid State Physics. New York: John Wiley & Sons, 1966
[49] [49] Lu H M, Li P Y, Cao Z H, Meng X K. Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. Journal of Physical Chemistry C, 2009, 113(18): 7598-7602
[50] [50] Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298 (5594): 811-814.
Get Citation
Copy Citation Text
Qixin WAN, Hao LIN, Shuai WANG, Jiangnan DAI, Changqing CHEN. Ripening-resistance of Pd on TiO2(110) from first-principles kinetics[J]. Frontiers of Optoelectronics, 2020, 13(4): 409
Category: RESEARCH ARTICLE
Received: Apr. 24, 2019
Accepted: Jun. 17, 2019
Published Online: May. 14, 2021
The Author Email: Jiangnan DAI (daijiangnan@mail.hust.edu.cn)