Optics and Precision Engineering, Volume. 31, Issue 22, 3266(2023)
Double layer sliding mode force/position impedance control for dual-arm space robot on orbit auxiliary docking spacecraft operation
[1] [1] 田甜, 刘海印. 美国航空航天局机器人在轨加注任务简析[J]. 中国航天, 2019(4):42-47. doi: 10.3969/j.issn.1002-7742.2019.04.011TIANT, LIUH. A brief analysis of NASA’ robotic refueling mission[J]. Aerospace China, 2019(4):42-47.(in Chinese). doi: 10.3969/j.issn.1002-7742.2019.04.011
[2] TAYLOR T, KISTLER W, CITRON R. On-Orbit fuel depot deployment, management and evolution focused on cost reduction[C], 6757(2009).
[3] [3] 艾海平, 陈力. 空间机器人捕获航天器操作的避撞柔顺无源神经网络H∞控制[J]. 光学 精密工程, 2020, 28(3): 717-726. doi: 10.3788/ope.20202803.0717AIH P, CHENL. Passivity-based neural network H∞ avoidance compliant control of space robot capturing spacecraft[J]. Opt. Precision Eng., 2020, 28(3): 717-726.(in Chinese). doi: 10.3788/ope.20202803.0717
[4] [4] 戈新生, 陈立群, 刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63-68. doi: 10.3969/j.issn.1000-4750.2006.03.012GEX S, CHENL Q, LIUY Z. Optimal control of a nonholonomic motion planning for mutilbody systems[J]. Engineering Mechanics, 2006, 23(3): 63-68.(in Chinese). doi: 10.3969/j.issn.1000-4750.2006.03.012
[5] COLESHILL E, OSHINOWO L, REMBALA R et al. Dextre: Improving maintenance operations on the International Space Station[J]. Acta Astronautica, 64, 869-874(2009).
[6] DIFTLER M A, MEHLING J S, ABDALLAH M E et al. Robonaut 2-the first humanoid robot in space[C], 2178-2183(9).
[7] [7] 郭闻昊, 王天舒. 空间机器人抓捕目标星碰撞前构型优化[J]. 宇航学报, 2015, 36(4): 390-396. doi: JournalArticle/5b3b9a08c095d70f00810ba7GUOW H, WANGT S. Pre-impact configuration optimization for a space robot capturing target satellite[J]. Journal of Astronautics, 2015, 36(4): 390-396.(in Chinese). doi: JournalArticle/5b3b9a08c095d70f00810ba7
[8] JIA Y H, HU Q, XU S J. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters[J]. Acta Mechanica Sinica, 30, 112-124(2014).
[9] YAN L, XU W F, HU Z H et al. Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation[J]. Multibody System Dynamics, 45, 431-455(2019).
[10] ZHANG L, JIA QING XUAN, CHEN G et al. The analysis of free-floating space manipulator when tracking desired force/position[J]. Applied Mechanics and Materials, 742, 560-566(2015).
[11] LIU X F, LI H Q, CHEN Y J et al. Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm[J]. Multibody System Dynamics, 33, 315-332(2015).
[12] WU S, MOU F, LIU Q et al. Contact dynamics and control of a space robot capturing a tumbling object[J]. Acta Astronautica, 151, 532-542(2018).
[13] SUN G H, ZOU Y J et al. Impedance control of multi-arm space robot for the capture of non-cooperative targets[J]. Journal of Systems Engineering and Electronics, 31, 1051-1061(2020).
[14] SHIBLI M. Unified modeling approach of kinematics, dynamics and control of a free-flying space robot interacting with a target satellite[J]. Intelligent Control and Automation, 2, 8-23(2011).
[15] SARIYILDIZ E, CHEN G, YU H Y. An acceleration-based robust motion controller design for a novel series elastic actuator[J]. IEEE Transactions on Industrial Electronics, 63, 1900-1910(2016).
[16] LI X, PAN Y P, CHEN G et al. Continuous tracking control for a compliant actuator with two-stage stiffness[J]. IEEE Transactions on Automation Science and Engineering, 15, 57-66(2018).
[17] KEPPLER M, LAKATOS D et al. Elastic structure preserving (ESP) control for compliantly actuated robots[J]. IEEE Transactions on Robotics, 34, 317-335(2018).
[18] HOGAN N. Stable execution of contact tasks using impedance control[C], 1047-1054(1987).
[19] JIAO C, YU L, SU X et al. Adaptive hybrid impedance control for dual-arm cooperative manipulation with object uncertainties[J]. Automatica, 140, 110232(2022).
[20] YU X B, LI B, HE W et al. Adaptive-constrained impedance control for human-robot Co-transportation[J]. IEEE Transactions on Cybernetics, 52, 13237-13249(2022).
[21] ZHAO X W, HAN S B, TAO B et al. Model-based Actor-Critic learning of robotic impedance control in complex interactive environment[J]. IEEE Transactions on Industrial Electronics, 69, 13225-13235(2021).
[22] GUO Z Y. On a novel equivalent control-based adaptive sliding mode approach for autopilot design of BTT missiles[J]. Transactions of the Institute of Measurement and Control, 40, 578-590(2018).
[23] SHTESSEL Y, TALEB M, PLESTAN F. A novel adaptive-gain
[24] EDWARDS C, SHTESSEL Y. Adaptive dual-layer super-twisting control and observation[J]. International Journal of Control, 89, 1759-1766(2016).
[25] UTKIN VI, POZNYAK AS. Adaptive sliding mode control with application to super-twist algorithm: equivalent control method[J]. Automatica, 49, 39-47(2013).
[26] [26] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51(4): 1156-1169. doi: 10.6052/0459-1879-18-407ZHUA, CHENL. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169.(in Chinese). doi: 10.6052/0459-1879-18-407
[27] LI M, FENG H, ZHANG X G. Modeling and Simulation for Z-Axis Force/Position-Servo system of assembly manipulator[C], 1285-1290(28).
Get Citation
Copy Citation Text
An ZHU, Li CHEN. Double layer sliding mode force/position impedance control for dual-arm space robot on orbit auxiliary docking spacecraft operation[J]. Optics and Precision Engineering, 2023, 31(22): 3266
Category:
Received: Apr. 3, 2023
Accepted: --
Published Online: Dec. 29, 2023
The Author Email: An ZHU (zhu_an24@sina. com)