Journal of Innovative Optical Health Sciences, Volume. 10, Issue 6, 1742007(2017)

Multimodal probe for optical coherence tomography epidetection and micron-scale indentation

L. Bartolini*, F. Feroldi, J. J. A. Weda, M. Slaman, J. F. de Boer, and D. Iannuzzi
Author Affiliations
  • Department of Physics and Astronomy, Vrije Universiteit Amsterdam and LaserLab Amsterdam, de Boelelaan 1081, 1081HV Amsterdam, The Netherlands
  • show less
    References(44)

    [1] [1] G. A. Holzapfel, R. W. Ogden , Mechanics of Biological Tissue, Springer-Verlag, Berlin (2006).

    [2] [2] R. G. Wells , “Tissue mechanics and fibrosis,” Biochim. Biophys. Acta, Mol. Basis Dis. 1832, 884–890 (2013).

    [3] [3] S. C. Cowin, S. B. Doty , Tissue Mechanics, Springer, New York (2007).

    [4] [4] I. Lokody , “Microenvironment: Tumour-promoting tissue mechanics,” Nat. Rev. Cancer 14, 296–297 (2014).

    [5] [5] M. Lekka, D. Gil, K. Pogoda, J. Dulińska-Litewka, R. Jach, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, Z. Stachura et al., “Cancer cell detection in tissue sections using AFM,” Arch. Biochem. Biophys. 518, 151–156 (2012).

    [6] [6] G. Binnig, C. F. Quate, C. Gerber , “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).

    [7] [7] M. L. Crichton, X. Chen, H. Huang, M. A. F. Kendall , “Elastic modulus and viscoelastic properties of full thickness skin characterised at micro scales,” Biomaterials 34, 2087–2097 (2013).

    [8] [8] B. Pittenger, “Advances in AFM nanomechanics AFM provides high resolution mapping of various sample properties” (2013).

    [9] [9] M. L. Oyen , “Nanoindentation of biological and biomimetic materials,” Exp. Tech. 37, 73–87 (2013).

    [10] [10] M. L. Oyen, “Analytical techniques for indentation of viscoelastic materials,” Phil. Mag. 86, 5625–5641 (2006).

    [11] [11] G. Mattei, G. Gruca, N. Rijnveld, A. Ahluwalia , “The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation” J. Mech. Behav. Biomed. Mater. 50, 150–159 (2015).

    [12] [12] C.-L. Guo, N. C. Harris, S. S. Wijeratne, E. W. Frey, C.-H. Kiang , “Multiscale mechanobiology: Mechanics at the molecular, cellular, and tissue levels,” Cell Biosci. 3, 25 (2013).

    [13] [13] P. Egan, R. Sinko, P. R. LeDuc, S. Keten , “The role of mechanics in biological and bio-inspired systems,” Nat. Commun. 6, 7418 (2015).

    [14] [14] J. L. Katz, A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S. J. Eppell, M. Tabib-Azar , “Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces,” Mater. Sci. Eng. C 27, 450–468 (2007).

    [15] [15] J. Schmitt , “OCT elastography: Imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).

    [16] [16] J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, S. G. Adie , “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22, 1–20 (2016).

    [17] [17] K. V. Larin, D. D. Sampson , “Optical coherence elastography — OCT at work in tissue biomechanics [invited],” Biomed. Opt. Express 8, 1172 (2017).

    [18] [18] S. Wang, K. V. Larin , “Optical coherence elastography for tissue characterization: A review,” J. Biophoton. 9999, 1–24 (2014).

    [19] [19] B. F. Kennedy, K. M. Kennedy, D. D. Sampson , “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).

    [20] [20] B. F. Kennedy, P. Wijesinghe, D. D. Sampson , “The emergence of optical elastography in biomedicine,” Nat. Photon. 11, 215–221 (2017).

    [21] [21] B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, D. D. Sampson , “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5, 2113 (2014).

    [22] [22] K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, B. F. Kennedy , “Quantitative micro-elastography: Imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).

    [23] [23] L. Chin, B. F. Kennedy, K. M. Kennedy, P. Wijesinghe, G. J. Pinniger, J. R. Terrill, R. A. McLaughlin, D. D. Sampson , “Three-dimensional optical coherence micro-elastography of skeletal muscle tissue,” Biomed. Opt. Express 5, 3090–3102 (2014).

    [24] [24] S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, B. F. Kennedy , “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8, 2458 (2017).

    [25] [25] K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, D. D. Sampson , “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett. 37, 2310 (2012).

    [26] [26] K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, D. D. Sampson , “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt. 18, 121510 (2013).

    [27] [27] Y. Qiu, Y. Wang, Y. Xu, N. Chandra, J. Haorah, B. Hubbi, B. J. Pfister, X. Liu , “Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties,” Biomed. Opt. Express 7, 688–700 (2016).

    [28] [28] D. Chavan, T. C. van de Watering, G. Gruca, J. H. Rector, K. Heeck, M. Slaman, D. Iannuzzi , “Ferrule-top nanoindenter: An optomechanical fiber sensor for nanoindentation,” Rev. Sci. Instrum. 83, 115110 (2012).

    [29] [29] H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, D. Iannuzzi , “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).

    [30] [30] S. V. Beekmans, D. Iannuzzi , “Characterizing tissue stiffness at the tip of a rigid needle using an opto-mechanical force sensor,” Biomed. Microdevices 18, 1–8 (2016).

    [31] [31] E. J. Bos, K. van der Laan, M. N. Helder, M. G. Mullender, D. Iannuzzi, P. P. van Zuijlen , “Noninvasive measurement of ear cartilage elasticity on the cellular level: A new method to provide biomechanical information for tissue engineering,” Plast. Reconstr. Sur. Glob. Open 5, e1147 (2017).

    [32] [32] C. Lavet, P. Ammann , “Osteoarthritis like alteration of cartilage and subchondral bone induced by protein malnutrition is treated by nutritional essential amino acids supplements,” Osteoarthr. Cartilage 25, S 293 (2017).

    [33] [33] B. Sarker, R. Singh, T. Zehnder, T. Forgber, C. Alexiou, I. Cicha, R. Detsch, A. R. Boccaccini , “Bioactive and compatible polymers macromolecular interactions in alginate–gelatin hydrogels regulate the behavior of human fibroblasts,” J. Bioact. Compat. Polym. 32, 309–324 (2017).

    [34] [34] P. R. Moshtagh, B. Pouran, N. M. Korthagen, A. A. Zadpoor, H. Weinans , “Guidelines for an optimized indentation protocol for measurement of cartilage stiffness: The effects of spatial variation and indentation parameters,” J. Biomech. 49, 3602–3607 (2016).

    [35] [35] M. Vashaghian, A. M. Ruiz-Zapata, M. H. Kerkhof, B. Zandieh-Doulabi, A. Werner, J. P. Roovers, T. H. Smit , “Toward a new generation of pelvic floor implants with electrospun nanofibrous matrices: A feasibility study,” Neurourol. Urodyn. 36, 565–573 (2017).

    [36] [36] W. E. G. Müller, E. Tolba, H. C. Schroder, S. Wang, G. Glaber, R. Munoz-Espí, T. Link, X. Wang , “A new polyphosphate calcium material with morphogenetic activity,” Mater. Lett. 148, 163–166 (2015).

    [37] [37] S. Wang, X. Wang, F. G. Draenert, O. Albert, H. C. Schroder, V. Mailqnder, G. Mitov, W. E. G. Müller , “Bioactive and biodegradable silica biomaterial for bone regeneration,” Bone 67, 292–304 (2014).

    [38] [38] M. Neufurth, X. Wang, H. C. Schroder, Q. Feng, B. Diehl-Seifert, T. Ziebart, R. Steffen, S. Wang, W. E. G. Müller , “Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells,” Biomaterials 35, 8810–8819 (2014).

    [39] [39] D. Chavan, J. Mo, M. de Groot, A. Meijering, J. F. de Boer, D. Iannuzzi , “Collecting optical coherence elastography depth profiles with a micromachined cantilever probe,” Opt. Lett. 38, 1476–1478 (2013).

    [40] [40] Y. Yang, P. O. Bagnaninchi, M. Ahearne, R. K. Wang, K.-K. Liu , “A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels,” J. R. Soc. Interface 4, 1169–1173 (2007).

    [41] [41] J. Li, M. de Groot, F. Helderman, J. Mo, J. M. A. Daniels, K. Grünberg, T. G. Sutedja, J. F. de Boer , “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express 20, 24132 (2012).

    [42] [42] J. Li, F. Feroldi, J. de Lange, J. M. A. Daniels, K. Grünberg, J. F. de Boer , “Polarization sensitive optical frequency domain imaging system for endobronchial imaging,” Opt. Express 23, 3390 (2015).

    [43] [43] S. V. Beekmans, D. Iannuzzi , “A metrological approach for the calibration of force transducers with interferometric readout,” Surf. Topogr. Metrol. Prop. 3, 1–12 (2015).

    [44] [44] S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, S. Sriram , “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales,” Appl. Phys. Rev. 2, 011303 (2015).

    Tools

    Get Citation

    Copy Citation Text

    L. Bartolini, F. Feroldi, J. J. A. Weda, M. Slaman, J. F. de Boer, D. Iannuzzi. Multimodal probe for optical coherence tomography epidetection and micron-scale indentation[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 10, 2017

    Accepted: Sep. 15, 2017

    Published Online: Jan. 10, 2019

    The Author Email: L. Bartolini (l.bartolini@vu.nl)

    DOI:10.1142/s179354581742007x

    Topics