Acta Optica Sinica, Volume. 42, Issue 3, 0327010(2022)

Research Progress on Active and Passive Magnetic-Free Nonreciprocity

Lifeng Liu1,2, Yiqi Hu1,2, Shicheng Zhang1, Yihong Qi1, Gongwei Lin1,3, Yueping Niu1、*, and Shangqing Gong1、**
Author Affiliations
  • 1School of Physics, East China University of Science and Technology, Shanghai 200237, China
  • 2School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • 3College of Physics and Energy, Fujian Provincial Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, Fujian 350108
  • show less
    References(64)

    [1] Aplet L J, Carson J W. A Faraday effect optical isolator[J]. Applied Optics, 3, 544-545(1964).

    [2] Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics[J]. Science and Technology of Advanced Materials, 15, 014602(2014).

    [3] Yu R L, Li J, Chen W W et al. Silicon-based all-optical Fredkin gate using cross-phase modulation effect[J]. Acta Optica Sinica, 41, 0913001(2021).

    [4] Wang J L, Huangpu L G, Chen H M. Design of polarization-insensitive multimode interference 1×3 optical power splitter[J]. Acta Optica Sinica, 41, 0713001(2021).

    [5] Pan W L, Chen H M, Zhuang Y Y et al. Hybrid demultiplexer for mode-wavelength division based on nanowire waveguides and one-dimensional photonic crystal nanobeam cavity[J]. Acta Optica Sinica, 41, 0413001(2021).

    [6] Levy M. The on-chip integration of magnetooptic waveguide isolators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 1300-1306(2002).

    [7] Chen R Y, Jiang G M, Hao Y L et al. Enhancement of nonreciprocal phase shift by using nanoscale air gap[J]. Optics Letters, 35, 1335-1337(2010).

    [8] Takei R, Yoshida K, Mizumoto T. Effects of wafer precleaning and plasma irradiation to wafer surfaces on plasma-assisted surface-activated direct bonding[J]. Japanese Journal of Applied Physics, 49, 086204(2010).

    [9] Mizumoto T, Shoji Y, Takei R. Direct wafer bonding and its application to waveguide optical isolators[J]. Materials, 5, 985-1004(2012).

    [10] Huang D N, Pintus P, Shoji Y et al. Integrated broadband Ce∶YIG/Si Mach-Zehnder optical isolators with over 100 nm tuning range[J]. Optics Letters, 42, 4901-4904(2017).

    [11] Sounas D L, Alù A. Non-reciprocal photonics based on time modulation[J]. Nature Photonics, 11, 774-783(2017).

    [12] Yu Z F, Fan S H. Complete optical isolation created by indirect interband photonic transitions[J]. Nature Photonics, 3, 91-94(2009).

    [13] Lira H, Yu Z F, Fan S H et al. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip[J]. Physical Review Letters, 109, 033901(2012).

    [14] Fang K J, Yu Z F, Fan S H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation[J]. Nature Photonics, 6, 782-787(2012).

    [15] Kinkhabwala A, Yu Z F, Fan S H et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [16] Yu Z F, Fan S H. Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions[J]. Applied Physics Letters, 94, 171116(2009).

    [17] Fang K J, Yu Z F, Fan S H. Photonic Aharonov-Bohm effect based on dynamic modulation[J]. Physical Review Letters, 108, 153901(2012).

    [18] Tzuang L D, Fang K J, Nussenzveig P et al. Non-reciprocal phase shift induced by an effective magnetic flux for light[J]. Nature Photonics, 8, 701-705(2014).

    [19] Li E B, Eggleton B J, Fang K J et al. Photonic Aharonov-Bohm effect in photon-phonon interactions[J]. Nature Communications, 5, 3225(2014).

    [20] Fleury R, Sounas D L, Sieck C F et al. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator[J]. Science, 343, 516-519(2014).

    [21] Estep N A, Sounas D L, Soric J et al. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops[J]. Nature Physics, 10, 923-927(2014).

    [22] Sounas D L, Alù A. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation[J]. ACS Photonics, 1, 198-204(2014).

    [23] Sounas D L, Caloz C, Alù A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials[J]. Nature Communications, 4, 2407(2013).

    [24] Trainiti G, Ruzzene M. Non-reciprocal elastic wave propagation in spatiotemporal periodic structures[J]. New Journal of Physics, 18, 083047(2016).

    [25] Wang J H, Herrmann J F, Witmer J D et al. Photonic modal circulator using temporal refractive-index modulation with spatial inversion symmetry[J]. Physical Review Letters, 126, 193901(2021).

    [26] Poulton C G, Pant R, Byrnes A et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides[J]. Optics Express, 20, 21235-21246(2012).

    [27] Kang M S, Butsch A. Russell P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre[J]. Nature Photonics, 5, 549-553(2011).

    [28] Hafezi M, Rabl P. Optomechanically induced non-reciprocity in microring resonators[J]. Optics Express, 20, 7672-7684(2012).

    [29] Shen Z, Zhang Y L, Chen Y et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 10, 657-661(2016).

    [30] Ruesink F, Miri M A, Alù A et al. Nonreciprocity and magnetic-free isolation based on optomechanical interactions[J]. Nature Communications, 7, 13662(2016).

    [31] Ruesink F, Mathew J P, Miri M A et al. Optical circulation in a multimode optomechanical resonator[J]. Nature Communications, 9, 1798(2018).

    [32] Xia C C, Yan X B, Tian X D et al. Ideal optical isolator with a two-cavity optomechanical system[J]. Optics Communications, 451, 197-201(2019).

    [33] Xia K Y, Lu G W, Lin G W et al. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling[J]. Physical Review A, 90, 043802(2014).

    [34] Scheucher M, Hilico A, Will E et al. Quantum optical circulator controlled by a single chirally coupled atom[J]. Science, 354, 1577-1580(2016).

    [35] Sayrin C, Junge C, Mitsch R et al. Nanophotonic optical isolator controlled by the internal state of cold atoms[J]. Physical Review X, 5, 041036(2015).

    [36] You Y, Hu Y Q, Lin G W et al. Quantum nonreciprocity based on electromagnetically induced transparency in chiral quantum-optical systems[J]. Physical Review A, 103, 063706(2021).

    [37] Yan W B, Ni W Y, Zhang J et al. Tunable single-photon diode by chiral quantum physics[J]. Physical Review A, 98, 043852(2018).

    [38] Tang L, Tang J S, Zhang W D et al. On-chip chiral single-photon interface: isolation and unidirectional emission[J]. Physical Review A, 99, 043833(2019).

    [39] Horsley S A R, Wu J H, Artoni M et al. Optical nonreciprocity of cold atom Bragg mirrors in motion[J]. Physical Review Letters, 110, 223602(2013).

    [40] Wang D W, Zhou H T, Guo M J et al. Optical diode made from a moving photonic crystal[J]. Physical Review Letters, 110, 093901(2013).

    [41] Ramezani H, Jha P K, Wang Y et al. Nonreciprocal localization of photons[J]. Physical Review Letters, 120, 043901(2018).

    [42] Zhang S C, Hu Y Q, Lin G W et al. Thermal-motion-induced non-reciprocal quantum optical system[J]. Nature Photonics, 12, 744-748(2018).

    [43] Hu Y Q, Liu L F, Zhang S C et al. Low insertion loss optical isolator with widely tunable frequency[J]. Optics Communications, 489, 126861(2021).

    [44] Hu Y Q, Zhang S C, Kuang X Y et al. Reconfigurable nonreciprocity with low insertion loss using a simple two-level system[J]. Optics Express, 28, 38710-38717(2020).

    [45] Hu Y Q, Zhang S C, Qi Y H et al. Multiwavelength magnetic-free optical isolator by optical pumping in warm atoms[J]. Physical Review Applied, 12, 054004(2019).

    [46] Zhang S C, Lin G W, Hu Y Q et al. Cavity-free circulator with low insertion loss using hot atoms[J]. Physical Review Applied, 14, 024032(2020).

    [47] Lin G W, Zhang S C, Hu Y Q et al. Nonreciprocal amplification with four-level hot atoms[J]. Physical Review Letters, 123, 033902(2019).

    [48] Xia K Y, Nori F, Xiao M. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity[J]. Physical Review Letters, 121, 203602(2018).

    [49] Li E Z, Ding D S, Yu Y C et al. Experimental demonstration of cavity-free optical isolators and optical circulators[J]. Physical Review Research, 2, 033517(2020).

    [50] Liang C, Liu B, Xu A N et al. Collision-induced broadband optical nonreciprocity[J]. Physical Review Letters, 125, 123901(2020).

    [51] Dong M X, Xia K Y, Zhang W H et al. 7(12): eabe8924(2021).

    [52] Fan L, Wang J, Varghese L T et al. An all-silicon passive optical diode[J]. Science, 335, 447-450(2012).

    [53] Fan L, Varghese L T, Wang J et al. Silicon optical diode with 40 dB nonreciprocal transmission[J]. Optics Letters, 38, 1259-1261(2013).

    [54] Xia X W, Xu J P, Yang Y P. Controllable optical bistability of an asymmetric cavity containing a single two-level atom[J]. Physical Review A, 90, 043857(2014).

    [55] Yang P F, Xia X W, He H et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 123, 233604(2019).

    [56] Hu Y Q, Qi Y H, You Y et al. Passive nonlinear optical isolators bypassing dynamic reciprocity[J]. Physical Review Applied, 16, 014046(2021).

    [57] Lodahl P, Mahmoodian S, Stobbe S et al. Chiral quantum optics[J]. Nature, 541, 473-480(2017).

    [58] Höckel D, Benson O. Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level[J]. Physical Review Letters, 105, 153605(2010).

    [59] Khanikaev A B, Alù A. Nonlinear dynamic reciprocity[J]. Nature Photonics, 9, 359-361(2015).

    [60] Sounas D L, Alù A. Fundamental bounds on the operation of Fano nonlinear isolators[J]. Physical Review B, 97, 115431(2018).

    [61] Sounas D L, Soric J, Alù A. Broadband passive isolators based on coupled nonlinear resonances[J]. Nature Electronics, 1, 113-119(2018).

    [62] Yang K Y, Skarda J, Cotrufo M et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR[J]. Nature Photonics, 14, 369-374(2020).

    [63] Wang K, Gao S T, Wang Y et al. Four-wave-mixing-based silicon integrated optical isolator with dynamic non-reciprocity[J]. IEEE Photonics Technology Letters, 28, 1739-1742(2016).

    [64] Hua S Y, Wen J M, Jiang X S et al. Demonstration of a chip-based optical isolator with parametric amplification[J]. Nature Communications, 7, 13657(2016).

    Tools

    Get Citation

    Copy Citation Text

    Lifeng Liu, Yiqi Hu, Shicheng Zhang, Yihong Qi, Gongwei Lin, Yueping Niu, Shangqing Gong. Research Progress on Active and Passive Magnetic-Free Nonreciprocity[J]. Acta Optica Sinica, 2022, 42(3): 0327010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Oct. 26, 2021

    Accepted: Dec. 30, 2021

    Published Online: Jan. 24, 2022

    The Author Email: Niu Yueping (niuyp@ecust.edu.cn), Gong Shangqing (sqgong@ecust.edu.cn)

    DOI:10.3788/AOS202242.0327010

    Topics