Acta Optica Sinica, Volume. 42, Issue 3, 0327010(2022)
Research Progress on Active and Passive Magnetic-Free Nonreciprocity
[1] Aplet L J, Carson J W. A Faraday effect optical isolator[J]. Applied Optics, 3, 544-545(1964).
[2] Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics[J]. Science and Technology of Advanced Materials, 15, 014602(2014).
[3] Yu R L, Li J, Chen W W et al. Silicon-based all-optical Fredkin gate using cross-phase modulation effect[J]. Acta Optica Sinica, 41, 0913001(2021).
[4] Wang J L, Huangpu L G, Chen H M. Design of polarization-insensitive multimode interference 1×3 optical power splitter[J]. Acta Optica Sinica, 41, 0713001(2021).
[5] Pan W L, Chen H M, Zhuang Y Y et al. Hybrid demultiplexer for mode-wavelength division based on nanowire waveguides and one-dimensional photonic crystal nanobeam cavity[J]. Acta Optica Sinica, 41, 0413001(2021).
[6] Levy M. The on-chip integration of magnetooptic waveguide isolators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 1300-1306(2002).
[7] Chen R Y, Jiang G M, Hao Y L et al. Enhancement of nonreciprocal phase shift by using nanoscale air gap[J]. Optics Letters, 35, 1335-1337(2010).
[8] Takei R, Yoshida K, Mizumoto T. Effects of wafer precleaning and plasma irradiation to wafer surfaces on plasma-assisted surface-activated direct bonding[J]. Japanese Journal of Applied Physics, 49, 086204(2010).
[9] Mizumoto T, Shoji Y, Takei R. Direct wafer bonding and its application to waveguide optical isolators[J]. Materials, 5, 985-1004(2012).
[10] Huang D N, Pintus P, Shoji Y et al. Integrated broadband Ce∶YIG/Si Mach-Zehnder optical isolators with over 100 nm tuning range[J]. Optics Letters, 42, 4901-4904(2017).
[11] Sounas D L, Alù A. Non-reciprocal photonics based on time modulation[J]. Nature Photonics, 11, 774-783(2017).
[12] Yu Z F, Fan S H. Complete optical isolation created by indirect interband photonic transitions[J]. Nature Photonics, 3, 91-94(2009).
[13] Lira H, Yu Z F, Fan S H et al. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip[J]. Physical Review Letters, 109, 033901(2012).
[14] Fang K J, Yu Z F, Fan S H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation[J]. Nature Photonics, 6, 782-787(2012).
[15] Kinkhabwala A, Yu Z F, Fan S H et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).
[16] Yu Z F, Fan S H. Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions[J]. Applied Physics Letters, 94, 171116(2009).
[17] Fang K J, Yu Z F, Fan S H. Photonic Aharonov-Bohm effect based on dynamic modulation[J]. Physical Review Letters, 108, 153901(2012).
[18] Tzuang L D, Fang K J, Nussenzveig P et al. Non-reciprocal phase shift induced by an effective magnetic flux for light[J]. Nature Photonics, 8, 701-705(2014).
[19] Li E B, Eggleton B J, Fang K J et al. Photonic Aharonov-Bohm effect in photon-phonon interactions[J]. Nature Communications, 5, 3225(2014).
[20] Fleury R, Sounas D L, Sieck C F et al. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator[J]. Science, 343, 516-519(2014).
[21] Estep N A, Sounas D L, Soric J et al. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops[J]. Nature Physics, 10, 923-927(2014).
[22] Sounas D L, Alù A. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation[J]. ACS Photonics, 1, 198-204(2014).
[23] Sounas D L, Caloz C, Alù A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials[J]. Nature Communications, 4, 2407(2013).
[24] Trainiti G, Ruzzene M. Non-reciprocal elastic wave propagation in spatiotemporal periodic structures[J]. New Journal of Physics, 18, 083047(2016).
[25] Wang J H, Herrmann J F, Witmer J D et al. Photonic modal circulator using temporal refractive-index modulation with spatial inversion symmetry[J]. Physical Review Letters, 126, 193901(2021).
[26] Poulton C G, Pant R, Byrnes A et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides[J]. Optics Express, 20, 21235-21246(2012).
[27] Kang M S, Butsch A. Russell P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre[J]. Nature Photonics, 5, 549-553(2011).
[28] Hafezi M, Rabl P. Optomechanically induced non-reciprocity in microring resonators[J]. Optics Express, 20, 7672-7684(2012).
[29] Shen Z, Zhang Y L, Chen Y et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 10, 657-661(2016).
[30] Ruesink F, Miri M A, Alù A et al. Nonreciprocity and magnetic-free isolation based on optomechanical interactions[J]. Nature Communications, 7, 13662(2016).
[31] Ruesink F, Mathew J P, Miri M A et al. Optical circulation in a multimode optomechanical resonator[J]. Nature Communications, 9, 1798(2018).
[32] Xia C C, Yan X B, Tian X D et al. Ideal optical isolator with a two-cavity optomechanical system[J]. Optics Communications, 451, 197-201(2019).
[33] Xia K Y, Lu G W, Lin G W et al. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling[J]. Physical Review A, 90, 043802(2014).
[34] Scheucher M, Hilico A, Will E et al. Quantum optical circulator controlled by a single chirally coupled atom[J]. Science, 354, 1577-1580(2016).
[35] Sayrin C, Junge C, Mitsch R et al. Nanophotonic optical isolator controlled by the internal state of cold atoms[J]. Physical Review X, 5, 041036(2015).
[36] You Y, Hu Y Q, Lin G W et al. Quantum nonreciprocity based on electromagnetically induced transparency in chiral quantum-optical systems[J]. Physical Review A, 103, 063706(2021).
[37] Yan W B, Ni W Y, Zhang J et al. Tunable single-photon diode by chiral quantum physics[J]. Physical Review A, 98, 043852(2018).
[38] Tang L, Tang J S, Zhang W D et al. On-chip chiral single-photon interface: isolation and unidirectional emission[J]. Physical Review A, 99, 043833(2019).
[39] Horsley S A R, Wu J H, Artoni M et al. Optical nonreciprocity of cold atom Bragg mirrors in motion[J]. Physical Review Letters, 110, 223602(2013).
[40] Wang D W, Zhou H T, Guo M J et al. Optical diode made from a moving photonic crystal[J]. Physical Review Letters, 110, 093901(2013).
[41] Ramezani H, Jha P K, Wang Y et al. Nonreciprocal localization of photons[J]. Physical Review Letters, 120, 043901(2018).
[42] Zhang S C, Hu Y Q, Lin G W et al. Thermal-motion-induced non-reciprocal quantum optical system[J]. Nature Photonics, 12, 744-748(2018).
[43] Hu Y Q, Liu L F, Zhang S C et al. Low insertion loss optical isolator with widely tunable frequency[J]. Optics Communications, 489, 126861(2021).
[44] Hu Y Q, Zhang S C, Kuang X Y et al. Reconfigurable nonreciprocity with low insertion loss using a simple two-level system[J]. Optics Express, 28, 38710-38717(2020).
[45] Hu Y Q, Zhang S C, Qi Y H et al. Multiwavelength magnetic-free optical isolator by optical pumping in warm atoms[J]. Physical Review Applied, 12, 054004(2019).
[46] Zhang S C, Lin G W, Hu Y Q et al. Cavity-free circulator with low insertion loss using hot atoms[J]. Physical Review Applied, 14, 024032(2020).
[47] Lin G W, Zhang S C, Hu Y Q et al. Nonreciprocal amplification with four-level hot atoms[J]. Physical Review Letters, 123, 033902(2019).
[48] Xia K Y, Nori F, Xiao M. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity[J]. Physical Review Letters, 121, 203602(2018).
[49] Li E Z, Ding D S, Yu Y C et al. Experimental demonstration of cavity-free optical isolators and optical circulators[J]. Physical Review Research, 2, 033517(2020).
[50] Liang C, Liu B, Xu A N et al. Collision-induced broadband optical nonreciprocity[J]. Physical Review Letters, 125, 123901(2020).
[51] Dong M X, Xia K Y, Zhang W H et al. 7(12): eabe8924(2021).
[52] Fan L, Wang J, Varghese L T et al. An all-silicon passive optical diode[J]. Science, 335, 447-450(2012).
[53] Fan L, Varghese L T, Wang J et al. Silicon optical diode with 40 dB nonreciprocal transmission[J]. Optics Letters, 38, 1259-1261(2013).
[54] Xia X W, Xu J P, Yang Y P. Controllable optical bistability of an asymmetric cavity containing a single two-level atom[J]. Physical Review A, 90, 043857(2014).
[55] Yang P F, Xia X W, He H et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 123, 233604(2019).
[56] Hu Y Q, Qi Y H, You Y et al. Passive nonlinear optical isolators bypassing dynamic reciprocity[J]. Physical Review Applied, 16, 014046(2021).
[57] Lodahl P, Mahmoodian S, Stobbe S et al. Chiral quantum optics[J]. Nature, 541, 473-480(2017).
[58] Höckel D, Benson O. Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level[J]. Physical Review Letters, 105, 153605(2010).
[59] Khanikaev A B, Alù A. Nonlinear dynamic reciprocity[J]. Nature Photonics, 9, 359-361(2015).
[60] Sounas D L, Alù A. Fundamental bounds on the operation of Fano nonlinear isolators[J]. Physical Review B, 97, 115431(2018).
[61] Sounas D L, Soric J, Alù A. Broadband passive isolators based on coupled nonlinear resonances[J]. Nature Electronics, 1, 113-119(2018).
[62] Yang K Y, Skarda J, Cotrufo M et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR[J]. Nature Photonics, 14, 369-374(2020).
[63] Wang K, Gao S T, Wang Y et al. Four-wave-mixing-based silicon integrated optical isolator with dynamic non-reciprocity[J]. IEEE Photonics Technology Letters, 28, 1739-1742(2016).
[64] Hua S Y, Wen J M, Jiang X S et al. Demonstration of a chip-based optical isolator with parametric amplification[J]. Nature Communications, 7, 13657(2016).
Get Citation
Copy Citation Text
Lifeng Liu, Yiqi Hu, Shicheng Zhang, Yihong Qi, Gongwei Lin, Yueping Niu, Shangqing Gong. Research Progress on Active and Passive Magnetic-Free Nonreciprocity[J]. Acta Optica Sinica, 2022, 42(3): 0327010
Category: Quantum Optics
Received: Oct. 26, 2021
Accepted: Dec. 30, 2021
Published Online: Jan. 24, 2022
The Author Email: Niu Yueping (niuyp@ecust.edu.cn), Gong Shangqing (sqgong@ecust.edu.cn)