Acta Optica Sinica, Volume. 44, Issue 19, 1915001(2024)
Reconstruction of Dynamic Human Neural Radiance Fields Based on Monocular Vision
Fig. 1. Overview of methods for joint reconstruction of dynamic and static neural radiation fields
Fig. 2. Human body decomposition diagram. (a) Original image; (b) decomposition results of SAM; (c) decomposition results of Mask-RCNN
Fig. 3. Alignment optimization example. (a) Original image; (b) alignment image by ROMP algorithm; (c) optimized alignment image
Fig. 5. Background reconstruction. (a) Video capture scene; (b) static background reconstruction results
Fig. 6. Human body reconstruction results. (a) Da-pose new perspective map; (b) free viewing angle view
Fig. 7. Background and human body joint reconstruction of new pose rendering results. (a) Rollover; (b) walk; (c) roll; (d) balance
Fig. 8. Comparison of qualitative analysis results. (a) NSFF method; (b) Neuman method; (c) proposed method; (d) ground truth
Fig. 9. Ablation experiment. (a) No GC module; (b) no LSMPL module; (c) full module
|
|
Get Citation
Copy Citation Text
Chao Sun, Jun Qiu, Lina Wu, Chang Liu. Reconstruction of Dynamic Human Neural Radiance Fields Based on Monocular Vision[J]. Acta Optica Sinica, 2024, 44(19): 1915001
Category: Machine Vision
Received: Apr. 7, 2024
Accepted: May. 13, 2024
Published Online: Oct. 12, 2024
The Author Email: Liu Chang (liu.chang.cn@ieee.org)
CSTR:32393.14.AOS240809