Chinese Optics Letters, Volume. 20, Issue 6, 060602(2022)

Single-wall carbon nanotube assisted all-optical wavelength conversion at 2.05 µm

Zonghui Tao, Wanzhuo Ma*, Lei Du, Xin Li, Yan Lou, Tianshu Wang, and Huilin Jiang**
Author Affiliations
  • College of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    References(40)

    [1] W. Ma, T. Wang, Y. Zhang, P. Liu, Y. Su, Q. Jia, M. Bi, P. Zhang, H. Jiang. Widely tunable 2 µm continuous-wave and mode-locked fiber laser. Appl. Opt., 56, 3342(2017).

    [2] P. Lin, T. Wang, W. Ma, J. Chen, Z. Jiang, C. Yu. 2-µm free-space data transmission based on an actively mode-locked holmium-doped fiber laser. IEEE Photonics Technol. Lett., 32, 223(2020).

    [3] S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, M. Shimizu. Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%. Electron. Lett., 38, 361(2002).

    [4] Q. Xu, V. R. Almeida, M. Lipson. Micrometer-scale all-optical wavelength converter on silicon. Opt. Lett., 30, 2733(2005).

    [5] S. J. B. Yoo. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol., 14, 955(1996).

    [6] A. Zhang, M. S. Demokan. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. Opt. Lett., 30, 2375(2005).

    [7] Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, H. Zhang. Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Opt. Mater., 7, 1801777(2019).

    [8] R. A. Faris, S. K. Al-Hayali, A. H. Al-Janabi. Au coated ZnO/MWCNTs nanocomposites film-induced four-wave-mixing effect for multi-wavelength generation in erbium-doped fiber laser. Opt. Commun., 485, 126746(2021).

    [9] F. E. Durak, S. A. Sadik, K. Boumediene, M. Khelladi, A. Altuncu. Characterization of four wave mixing effect in dense wavelength division multiplexing systems. 28th Signal Processing and Communications Applications Conference (SIU), 1(2020).

    [10] R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, A. L. Gaeta. Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides. Opt. Lett., 36, 1263(2011).

    [11] Q. Jin, T. Yin, Z. Tu, D. Chen, Y. Shi, D. Dai, S. Gao. Performance evaluation of continuous-wave mid-infrared wavelength conversion in silicon waveguides. Appl. Opt., 58, 2584(2019).

    [12] S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics, 4, 561(2010).

    [13] N. A. Otman, M. Čada. Phase-matched mid-infrared difference frequency generation using a nanostructured gallium arsenide metamaterial with nanoholes. IEEE Photonics J., 12, 5900110(2020).

    [14] Z. Tu, X. Guan, D. Chen, H. Hu, X. Wang, S. Gao. 2 µm mid-infrared silicon-rich silicon nitride/silicon hybrid nonlinear waveguides. Opt. Commun., 481, 126544(2021).

    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [16] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys., 5, 438(2009).

    [17] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys., 5, 398(2009).

    [18] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech., 7, 699(2012).

    [19] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem., 5, 263(2013).

    [20] C. Qin, Y. Gao, Z. Qiao, L. Xiao, S. Jia. Atomic-layered MoS2 as a tunable optical platform. Adv. Opt. Mater., 4, 1429(2016).

    [21] X. Ling, H. Wang, S. Huang, F. Xia, M. S. Dresselhaus. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA, 112, 4523(2015).

    [22] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang,, D. Akinwande. Buckled two-dimensional Xene sheets. Nature Mater., 16, 163(2017).

    [23] M. Liu, Z. W. Wei, A. P. Luo, W. C. Xu, Z. C. Luo. Recent progress on applications of 2D material decorated microfiber photonic devices in pulse shaping and all-optical signal processing. Nanophotonics, 9, 2641(2020).

    [24] B. Xu, A. Martinez, S. Yamashita. Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion. IEEE Photonics Technol. Lett., 24, 1792(2012).

    [25] Y. Song, Y. Chen, X. Jiang, W. Liang, Z. Han. Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater., 6, 1701287(2018).

    [26] L. Du, X. Ding, D. Han, L. Sui, Z. Tao, W. Ma, W. Tianshu, Y. Wang. 1.9 µm all-optical wavelength converter based on a graphene oxide coated microfiber. Opt. Express, 29, 40286(2021).

    [27] L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma, Y. Xiang, J. Li, J. S. Ponraj, S. C. Dhanabalan, H. Zhang. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater., 29, 1806346(2019).

    [28] H. Hu, Z. Shi, K. Khan, R. Cao, W. Liang, A. K. Tareen, Y. Zhang, W. Huang, Z. Guo, X. Luo, H. Zhang. Recent advances in doping engineering of black phosphorus. J. Mater. Chem., 8, 5421(2020).

    [29] Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang, Y. Song, Y. Ge, L. Wu, J. Liu, J. Li, H. Zhang. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev., 13, 1800313(2019).

    [30] Q. Wu, Y. Wang, W. Huang, C. Wang, Z. Zheng, M. Zhang, H. Zhang. MXene-based high-performance all-optical modulators for actively Q-switched pulse generation. Photon. Res., 8, 1140(2020).

    [31] W. Huang, C. Ma, C. Li, Y. Zhang, L. Hu, T. Chen, Y. Tang, J. Ju, H. Zhang. Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics, 9, 2577(2020).

    [32] J. Zheng, Z. Yang, S. Chen, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics, 4, 1466(2017).

    [33] S. Yamashita. Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photonics, 4, 034301(2019).

    [34] J. Liu, Y. Wang, Z. Qu, X. Fan. 2 µm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber. Opt. Laser Technol., 44, 960(2012).

    [35] W. B. Cho, F. Rotermund. Carbon-nanotube-based bulk solid-state lasers. Woodhead Publishing Series in Electronic and Optical Materials, 144(2013).

    [36] S. Hitosugi, W. Nakanishi, T. Yamasaki, H. Isobe. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun., 2, 492(2011).

    [37] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba. Optical properties of single-wall carbon nanotubes. Synth. Met., 103, 2555(1999).

    [38] Y. Chen, T. Lu, G. Wang, X. Zhang, N. R. Raravikar, Y. Zhao, L. S. Schadler, P. M. Ajayan. Ultrafast optical switch properties of single-wall carbon nanotube polymer composites at 1.55 µm. Conference on Lasers and Electro-Optics, CFH4(2002).

    [39] J. Wang, X. Liang, G. Hu, Z. Zheng, S. Lin, D. Ouyang, X. Wu, P. Yan, S. Ruan, Z. Sun. 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci. Rep., 6, 28885(2016).

    [40] B. Xu, M. Omura, M. Takiguchi, A. Martinez, T. Ishigure, S. Yamashita, T. Kuga. Carbon nanotube/polymer composite coated tapered fiber for four wave mixing based wavelength conversion. Opt. Express, 21, 3651(2013).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Zonghui Tao, Wanzhuo Ma, Lei Du, Xin Li, Yan Lou, Tianshu Wang, Huilin Jiang, "Single-wall carbon nanotube assisted all-optical wavelength conversion at 2.05 µm," Chin. Opt. Lett. 20, 060602 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jan. 26, 2022

    Accepted: Mar. 18, 2022

    Published Online: Apr. 29, 2022

    The Author Email: Wanzhuo Ma (mawz@cust.edu.cn), Huilin Jiang (HLjiang@cust.edu.cn)

    DOI:10.3788/COL202220.060602

    Topics