Laser & Optoelectronics Progress, Volume. 59, Issue 3, 0304002(2022)

Indoor Visible Light Positioning Method Based on Extreme Learning Machine Neural Network

Ling Qin, Dongxing Wang, Fengying Wang, and Xiaoli Hu*
Author Affiliations
  • School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou , Inner Mongolia 014010, China
  • show less
    Figures & Tables(10)
    Model of the indoor VLP
    Structure of the ELM neural network
    RMSE of the ELM prediction model
    Positioning error of the ELM method
    Positioning results of different methods. (a) ELM method; (b) SVM method; (c) BP method; (d) GA-BP method
    Cumulative probability distribution of positioning errors
    • Table 1. RMSE of models with different number of hidden layer neuronsunit: cm

      View table

      Table 1. RMSE of models with different number of hidden layer neuronsunit: cm

      Number of neuronsRMSE
      2402.36
      2452.47
      2502.13
      2531.75
      2551.36
      2601.17
      2611.30
      2631.48
      2651.65
      2701.42
    • Table 2. Simulation parameters

      View table

      Table 2. Simulation parameters

      ParameterValue
      Pt /W10
      ψc /(°)90
      Ts1
      g10
      A /cm21
      ϕ1/2 /(°)30
    • Table 3. Positioning errors of different methodsunit: cm

      View table

      Table 3. Positioning errors of different methodsunit: cm

      method

      Positioning

      Max positioning errorAverage positioning error
      ELM6.441.17
      SVM16.893.74
      BP63.6021.23
      GA-BP10.292.72
    • Table 4. Positioning time of different methodsunit: s

      View table

      Table 4. Positioning time of different methodsunit: s

      Positioning methodTraining time of fingerprint dataAverage positioning time
      ELM0.06870.03594
      SVM0.10940.09375
      BP44.07030.09063
      GA-BP74.93750.09562
    Tools

    Get Citation

    Copy Citation Text

    Ling Qin, Dongxing Wang, Fengying Wang, Xiaoli Hu. Indoor Visible Light Positioning Method Based on Extreme Learning Machine Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0304002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: Apr. 20, 2021

    Accepted: May. 19, 2021

    Published Online: Jan. 24, 2022

    The Author Email: Xiaoli Hu (huxiaoli@imust.edu.cn)

    DOI:10.3788/LOP202259.0304002

    Topics