Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 5, 685(2025)

Recent advances in data-driven research on liquid crystal materials

jie LIU1,2, QI ji1,2, Shiyan GAO1,2, Wenyi CHEN1,2, Yuexin SUI1,2, Zemin HE1,2, Haiyan YANG1,2, and Zongcheng MIAO1,3、*
Author Affiliations
  • 1Shaanxi Key Laboratory of Liquid Crystal Polymer Intelligent Display,Technological Institute of Materials & Energy Science(TIMES),Xijing University,Xi'an 710123,China
  • 2Key Laboratory of Liquid Crystal Polymers based Flexible Display Technology in National Petroleum and Chemical Industry,School of Electronic Information,Xijing University,Xi'an 710123,China
  • 3School of Artificial Intelligence,Optics and Electronics(iOPEN),Northwestern Polytechnical University,Xi'an 710072,China
  • show less
    Figures & Tables(6)
    Data-driven applications in the field of LC materials
    Self-assembled structures and phase transition simulations in LC systems:(a)LC molecule composed of five particles,(b)LC molecule composed of ten particles,(c)Initial structure of the LCS under random arrangement;Influence of binary liquid crystal molecule ratio on phase transition temperature under machine learning:(d,e)Prediction results from different machine learning methods and feature importance ranking under RF[39];(f)Accuracy,loss,and confusion function of the Inception network applied to the complex classification task of isotropic,nematic,cholesteric,and smectic textures[41];(g)Average accuracy and confusion matrix of the Inception model on the ChSm test set[43].
    Overview of machine learning algorithm for optimizing threshold voltage parameters of co-doped ZnO liquid crystals[51]
    (a)Deep learning framework analyzes liquid crystal sensor images and calculates the bright area coverage ratio to detect different concentrations of Cd2+[58],hierarchical convolutional neural network for surfactant classification;(b)The first level classifies droplet patterns using grayscale micrographs;(c)The second level labels the surfactant type and concentration for bipolar liquid crystal droplets;(d)Performance evaluation through the confusion matrix from cross-validation[60].
    • Table 1. Common machine learning algorithms

      View table
      View in Article

      Table 1. Common machine learning algorithms

      算法名称定义优点缺点液晶材料方面的应用潜力
      决策树递归分裂特征来进行分类或回归的树形模型易于理解,解释性强,适用于分类和回归任务容易过拟合,尤其是数据噪声较大时液晶相的分类、材料性能预测
      支持向量机通过寻找最佳超平面将数据分类的模型在高维空间中表现优异,适合小样本高维数据大数据集下的计算开销大,参数调优复杂液晶相的分子分类、光学性质预测
      随机森林通过多个决策树的集成来提高预测准确性的模型强大的分类和回归能力,抗过拟合模型较复杂,训练时间长,难以解释液晶材料性能优化、多参数预测
      神经网络带有节点学习的多层非线性关系学习复杂的非线性关系,适应性强需要大量数据和计算资源,训练时间长液晶相图的自动特征学习与分类
    • Table 2. Common deep learning algorithms

      View table
      View in Article

      Table 2. Common deep learning algorithms

      算法名称定义优点缺点液晶材料下的应用潜力
      人工神经网络通过前向传播和反向传播优化权重,以最小化损失函数可建模非线性关系,适用于分类、回归等任务易过拟合,训练时间长,计算成本高液晶相行为分析
      深度神经网络包含多个隐藏层的ANN,通过层次化特征学习提取数据的高层次抽象表示自动特征提取,减少人工干预,适用于复杂任务需大量数据和计算资源,易出现梯度问题液晶材料的多层次特征学习
      卷积神经网络通过卷积核提取局部特征、池化操作降低维度的深度学习模型参数共享减少计算量,在图像任务中表现优异对数据变换敏感,需标注数据液晶材料的图像识别与纹理分析
      循环神经网络处理序列数据的神经网络,通过时间步上的隐藏状态传递信息可处理变长序列训练中易出现梯度消失或爆炸,难以捕捉长距离依赖液晶材料的动态行为建模
      长短时神经网络通过门控机制控制信息流动,解决长期依赖问题有效处理长期依赖问题计算复杂度高,训练时间长液晶材料的相变预测
      生成对抗网络由生成器和判别器组成,通过对抗性训练优化生成器生成逼真数据可生成高质量数据训练不稳定,易出现模式崩溃,需大量计算资源液晶材料的图像生成与增强
    Tools

    Get Citation

    Copy Citation Text

    jie LIU, QI ji, Shiyan GAO, Wenyi CHEN, Yuexin SUI, Zemin HE, Haiyan YANG, Zongcheng MIAO. Recent advances in data-driven research on liquid crystal materials[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(5): 685

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 11, 2025

    Accepted: --

    Published Online: Jun. 18, 2025

    The Author Email: Zongcheng MIAO (miaozongcheng@nwpu.edu.cn)

    DOI:10.37188/CJLCD.2025-0028

    Topics