International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 22010(2025)

Femtosecond laser micro/nano processing: from fundamental to applications

Gao Le, Zhang Qiming, and Gu Min
References(312)

[1] [1] Tan D Z, Sharafudeen K N, Yue Y Z and Qiu J R 2016 Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applicationsProg. Mater. Sci.76154–228

[2] [2] Shugaev M Vet al2016 Fundamentals of ultrafast laser-material interactionMRS Bull.41960–68

[3] [3] Guo B S, Sun J Y, Hua Y H, Zhan N W, Jia J G and Chu K P 2020 Femtosecond laser micro/nano-manufacturing: theories, measurements methods, and applicationsNanomanuf. Metrol.326–67

[4] [4] Eaton S M, Cerullo G and Osellame R 2012 Fundamentals of femtosecond laser modification of bulk dielectricsFemtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materialsed R Osellame, G Cerullo and R Ramponi (Springer) pp 3–18

[5] [5] Phillips K C, Gandhi H H, Mazur E and Sundaram S K 2015 Ultrafast laser processing of materials: a reviewAdv. Opt. Photon.4684–712

[6] [6] Wang J S, Fang F Z, An H J, Wu S, Qi H M, Cai Y X and Guo G Y 2023 Laser machining fundamentals: micro, nano, atomic and close-to-atomic scalesInt. J. Extrem. Manuf.5012005

[7] [7] Malinauskas M,ukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R and Juodkazis S 2016 Ultrafast laser processing of materials: from science to industryLight Sci. Appl.5e16133

[8] [8] Liu H G, Lin W X and Hong M H 2021 Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applicationsLight Sci. Appl.10162

[9] [9] Wang Het al2023 Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applicationsAdv. Funct. Mater.332214211

[10] [10] Rad Z F, Prewett P D and Davies G J 2021 High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arraysMicrosyst. Nanoeng.771

[11] [11] Zhou X Q, Hou Y H and Lin J Q 2015 A review on the processing accuracy of two-photon polymerizationAIP Adv.5030701

[12] [12] O'Halloran S, Pandit A, Heise A and Kellett A 2023 Two-photon polymerization: fundamentals, materials, and chemical modification strategiesAdv. Sci.102204072

[13] [13] Otuka A J G, Tomazio N B, Paula K T and Mendona C R 2021 Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffoldsPolymers131994

[14] [14] Wang X D, Yu H B, Li P W, Zhang Y Z, Wen Y D, Qiu Y, Liu Z, Li Y P and Liu L Q 2021 Femtosecond laser-based processing methods and their applications in optical device manufacturing: a reviewOpt. Laser Technol.135106687

[15] [15] Gattass R R and Mazur E 2008 Femtosecond laser micromachining in transparent materialsNat. Photon.2219–25

[16] [16] Balling P and Schou J 2013 Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin filmsRep. Prog. Phys.76036502

[17] [17] Siwick B J, Dwyer J R, Jordan R E and Miller R J D 2003 An atomic-level view of melting using femtosecond electron diffractionScience3021382–5

[18] [18] Lin Z B, Leveugle E, Bringa E M and Zhigilei L V 2010 Molecular dynamics simulation of laser melting of nanocrystalline AuJ. Phys. Chem.C1145686–99

[19] [19] Karim E T, Wu C P and Zhigilei L V 2014 Molecular dynamics simulations of laser-materials interactions: general and material-specific mechanisms of material removal and generation of crystal defectsFundamentals of Laser-Assisted Micro-and Nanotechnologiesed V Veiko and V Konov (Springer) pp 27–49

[20] [20] Wu C P and Zhigilei L V 2014 Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulationsAppl. Phys.A11411–32

[21] [21] Bulgakova N M, Stoian R, Rosenfeld A, Hertel I V and Campbell E E B 2004 Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materialsPhys. Rev.B69054102

[22] [22] Stoian R, Ashkenasi D, Rosenfeld A and Campbell E E B 2004 Coulomb explosion in ultrashort pulsed laser ablation of Al2O3Phys. Rev.B6213167–73

[23] [23] Gross E K U and Maitra N T 2012 Introduction to TDDFTFundamentals of Time-Dependent Density Functional Theoryed M A L Marques, N T Maitra, F M S Nogueira, E K U Gross and A Rubio (Springer) pp 53–99

[24] [24] Yuan Y P, Jiang L, Li X, Wang C and Lu Y F 2012 Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trainsJ. Appl. Phys.112103103

[25] [25] Anisimov S I, Kapeliovich B L and Perel'man T L 1974 Electron emission from metal surfaces exposed to ultrashort laser pulsesSov. J. Exp. Theor. Phys.39375–7

[26] [26] Jiang L and Tsai H L 2005 Improved two-temperature model and its application in ultrashort laser heating of metal filmsJ. Heat Transfer1271167–73

[27] [27] Yuan Y P, Jiang L, Li X, Wang C, Qu L T and Lu Y F 2013 Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trainsAppl. Phys.A111813–9

[28] [28] Tsai H L and Jiang L 2005 Fundamentals of energy cascade during ultrashort laser-material interactionsProc. SPIE5713343–57

[29] [29] Tsai H L and Jiang L 2008 Multiscale modeling of ultrafast laser-material interactionsProc. 3rd Pacific Int. Conf. on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication(PICALO) pp 755–60

[30] [30] Winkler M T 2009Non-Equilibrium Chalcogen Concentrations in Silicon: Physical Structure, Electronic Transport, and Photovoltaic Potential(Harvard University)

[31] [31] Sundaram S K and Mazur E 2002 Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulsesNat. Mater.1217–24

[32] [32] Sher M J, Winkler M T and Mazur E 2011 Pulsed-laser hyperdoping and surface texturing for photovoltaicsMRS Bull.36439–45

[33] [33] Chichkov B N, Momma C, Nolte S, Alvensleben F and Tnnermann A 1996 Femtosecond, picosecond and nanosecond laser ablation of solidsAppl. Phys.A63109–15

[34] [34] Korte F, Nolte S, Chichkov B N, Bauer T, Kamlage G, Wagner T, Fallnich C and Welling H 1999 Far-field and near-field material processing with femtosecond laser pulsesAppl. Phys.A69S7–S11

[35] [35] Booth H 2010 Laser processing in industrial solar module manufacturingJ. Laser Micro/Nanoeng.5183–91

[36] [36] Lian Z X, Zhou J H, Ren W F, Chen F Z, Xu J K, Tian Y L and Yu H D 2024 Recent progress in bio-inspired macrostructure array materials with special wettability—from surface engineering to functional applicationsInt. J. Extrem. Manuf.6012008

[37] [37] Wang H J, Zhao X Y, Xie Z C, Yang B, Zheng J, Yin K and Zhou Z R 2024 Bioinspired directional structures for inhibiting wetting on super-melt-philic surfaces above 1200 ℃Int. J. Extrem. Manuf.6045503

[38] [38] Zhang S Z, Rao S L, Li Y F, Wang S, Sun D Y, Liu F and Cheng G J 2024 Laser-forged trans-formation and encapsulation of nanoalloys: pioneering robust wideband electromagnetic wave absorption and shielding from GHz to THzInt. J. Extrem. Manuf.6055501

[39] [39] Xu L R, Tao J C, Li Z G, He G and Zhang D S 2024 Femtosecond laser ultrafast photothermal exsolutionInt. J. Extrem. Manuf.6055002

[40] [40] Kabashin A V, Delaporte P, Pereira A, Grojo D, Torres R, Sarnet T and Sentis M 2010 Nanofabrication with pulsed lasersNanoscale Res. Lett.5454

[41] [41] Zewail A H 2000 Femtochemistry: atomic-scale dynamics of the chemical bondJ. Phys. Chem.A1045660–94

[42] [42] Gaileviius D, Padolskyt V, Mikolinait L, akirzanovas S, Juodkazis S and Malinauskas M 2019 Additive-manufacturing of 3D glass-ceramics down to nanoscale resolutionNanoscale Horiz.4647–51

[43] [43] Zhou J C and Lin P T 2022 Generation of mid-infrared vortex beams by 3-D printed polymer phase platesOpt. Laser Technol.156108509

[44] [44] Balli F, Sultan M, Lami S K and Hastings J T 2020 A hybrid achromatic metalensNat. Commun.113892

[45] [45] Jonuauskas L, Gaileviius D, Rektyt S M, Baldacchini T, Juodkazis S and Malinauskas M 2019 Mesoscale laser 3D printingOpt. Express2715205–21

[46] [46] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevicesNature412697–8

[47] [47] Kazansky P G, Inouye H, Mitsuyu T, Miura K, Qiu J, Hirao K and Starrost F 1999 Anomalous anisotropic light scattering in Ge-doped silica glassPhys. Rev. Lett.822199–202

[48] [48] Qiu J R, Miura K, Inouye H, Kondo Y, Mitsuyu T and Hirao K 1998 Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ionsAppl. Phys. Lett.731763–65

[49] [49] Srinivas N K M N, Harsha S S and Rao D N 2005 Femtosecond supercontinuum generation in a quadratic nonlinear medium (KDP)Opt. Express133224–29

[50] [50] Lonzaga J B, Avanesyan S M, Langford S C and Dickinson J T 2003 Color center formation in soda-lime glass with femtosecond laser pulsesJ. Appl. Phys.944332–40

[51] [51] Wang X J, Fang H H, Sun F W and Sun H B 2022 Laser writing of color centersLaser Photon. Rev.162100029

[52] [52] Chen Y Cet al2017 Laser writing of coherent colour centres in diamondNat. Photon.1177–80

[53] [53] Kononenko V V, Vlasov I I, Gololobov V M, Kononenko T V, Semenov T A, Khomich A A, Shershulin V A, Krivobok V S and Konov V I 2017 Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation techniqueAppl. Phys. Lett.111081101

[54] [54] Rong Y Y, Ju Z P, Ma Q, Liu S K, Pan C D, Wu B T, Shen S and Wu E 2020 Efficient generation of nitrogen vacancy centers by laser writing close to the diamond surface with a layer of silicon nanoballsNew J. Phys.22013006

[55] [55] Miyagawa Ret al2022 Crystallinity in periodic nanostructure surface on Si substrates induced by near-and mid-infrared femtosecond laser irradiationSci. Rep.1220955

[56] [56] Guo Z Y, Qu S L, Ran L L, Han Y H and Liu S T 2008 Formation of two-dimensional periodic microstructures by a single shot of three interfered femtosecond laser pulses on the surface of silica glassOpt. Lett.332383–5

[57] [57] Pan J, Jia T Q, Huo Y Y, Jia X, Feng D H, Zhang S A, Sun Z R and Xu Z Z 2013 Great enhancement of near band-edge emission of ZnSe two-dimensional complex nanostructures fabricated by the interference of three femtosecond laser beamsJ. Appl. Phys.114093102

[58] [58] Yong J L, Li X L, Hu Y D, Peng Y B, Cheng Z L, Xu T Y, Wang C W and Wu D 2024 Triboelectric ‘electrostatic tweezers’ for manipulating droplets on lubricated slippery surfaces prepared by femtosecond laser processingInt. J. Extrem. Manuf.6035002

[59] [59] Luo F F, Lin G, Sun H Y, Zhang G, Liu L, Chen D P, Chen Q X, Zhao Q Z, Qiu J R and Xu Z Z 2011 Generation of bubbles in glass by a femtosecond laserOpt. Commun.2844592–5

[60] [60] Shimotsuma Y, Kazansky P G, Qiu J R and Hirao K 2003 Self-organized nanogratings in glass irradiated by ultrashort light pulsesPhys. Rev. Lett.91247405

[61] [61] Mills J D, Kazansky P G, Bricchi E and Baumberg J J 2002 Embedded anisotropic microreflectors by femtosecond-laser nanomachiningAppl. Phys. Lett.81196–8

[62] [62] Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H M, Henderson G and Unruh J 2003 Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiationOpt. Lett.28995–7

[63] [63] Beresna M, Geceviius M, Kazansky P G and Gertus T 2011 Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glassAppl. Phys. Lett.98201101

[64] [64] Beresna M, Geceviius M, Kazansky P G, Taylor T and Kavokin A V 2012 Exciton mediated self-organization in glass driven by ultrashort light pulsesAppl. Phys. Lett.101053120

[65] [65] Shimotsuma Y, Sakakura M, Kazansky P G, Beresna M, Qiu J R, Miura K and Hirao K 2010 Ultrafast manipulation of self-assembled form birefringence in glassAdv. Mater.224039–43

[66] [66] Cai W J, Libertun A R and Piestun R 2006 Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratingsOpt. Express143785–91

[67] [67] Huang X Jet al2020 Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescenceACS Nano143150−8

[68] [68] Sun K, Tan D Z, Song J, Xiang W D, Xu B B and Qiu J R 2021 Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applicationsAdv. Opt. Mater.92100094

[69] [69] Hu Y Z, Zhang W C, Ye Y, Zhao Z Y and Liu C 2020 Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversionACS Appl. Nano Mater.3850–7

[70] [70] Sun Ket al2022 Three-dimensional direct lithography of stable perovskite nanocrystals in glassScience375307–10

[71] [71] Lu J F, Tian J, Poumellec B, Garcia-Caurel E, Ossikovski R, Zeng X L and Lancry M 2023 Tailoring chiral optical properties by femtosecond laser direct writing in silicaLight: Sci. Appl.1246

[72] [72] Ehrt D, Kittel T, Will M, Nolte S and Tunnermann A 2004 Femtosecond-laser-writing in various glassesJ. Non-Cryst Solids345–346332–7

[73] [73] Krol D M 2008 Femtosecond laser modification of glassJ. Non-Cryst Solids354416–24

[74] [74] Shimotsuma Y, Hirao K, Kazansky P G and Qiu J R 2005 Three-dimensional micro-and nano-fabrication in transparent materials by femtosecond laserJpn. J. Appl. Phys.444735–48

[75] [75] Watanabe W, Li Y and Itoh K 2016 Ultrafast laser micro-processing of transparent materialOpt. Laser Technol.7852–61

[76] [76] Bricchi E, Klappauf B G and Kazansky P G 2004 Form birefringence and negative index change created by femtosecond direct writing in transparent materialsOpt. Lett.29119–21

[77] [77] Fernandes L A, Grenier J R, Herman P R, Aitchison J S and Marques P V S 2012 Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silicaOpt. Express2024103–14

[78] [78] Sakakura M, Lei Y H, Wang L, Yu Y H and Kazansky P G 2020 Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glassLight Sci. Appl.915

[79] [79] Brub J P, Bernier M and Valle R 2013 Femtosecond laser-induced refractive index modifications in fluoride glassOpt. Mater. Express3598–611

[80] [80] Lee T, Sun Q, Beresna M and Brambilla G 2021 Low bend loss femtosecond laser written waveguides exploiting integrated microcrackSci. Rep.1123770

[81] [81] Zhang F T, Nie Z G, Huang H X, Ma L, Tang H, Hao M M and Qiu J R 2019 Self-assembled three-dimensional periodic micro-nano structures in bulk quartz crystal induced by femtosecond laser pulsesOpt. Express276442–50

[82] [82] Zhang W C, Zhai Q X, Song J, Lou K Y, Li Y D, Ou Z M, Zhao Q Z and Dai Y 2020 Manipulation of self-organized nanograting for erasing and rewriting by ultrashort double-pulse sequences irradiation in fused silicaJ. Phys. D: Appl. Phys.53165106

[83] [83] Hnatovsky C, Taylor R S, Simova E, Rajeev P P, Rayner D M, Bhardwaj V R and Corkum P B 2006 Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etchingAppl. Phys.A8447–61

[84] [84] Kawabata S, Bai S, Obata K, Miyaji G and Sugioka K 2023 Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulsesInt. J. Extrem. Manuf.5015004

[85] [85] Obata K, Caballero-Lucas F, Kawabata S, Miyaji G and Sugioka K 2023 GHz bursts in MHz burst (BiBurst) enabling high-speed femtosecond laser ablation of silicon due to prevention of air ionizationInt. J. Extrem. Manuf.5025002

[86] [86] Derrien T J Y, Levy Y and Bulgakova N M 2023 Insights into laser-matter interaction from inside: wealth of processes, multiplicity of mechanisms and possible roadmaps for energy localizationUltrafast Laser Nanostructuring: The Pursuit of Extreme Scalesed R Stoian and J Bonse (Springer)

[87] [87] Rudenko A and Colombier J P 2023 How light drives material periodic patterns down to the nanoscaleUltrafast Laser Nanostructuring: The Pursuit of Extreme Scalesed R Stoian and J Bonse (Springer)

[88] [88] Balage P, Lopez J, Bonamis G, Hnninger C and Manek-Hnninger I 2023 Crack-free high-aspect ratio holes in glasses by top-down percussion drilling with infrared femtosecond laser GHz-burstsInt. J. Extrem. Manuf.5015002

[89] [89] Wen X Wet al2021 3D-printed silica with nanoscale resolutionNat. Mater.201506–11

[90] [90] Gao L, Zhang Q M, Evans R A and Gu M 2021 4D ultra-high-density long data storage supported by a solid-state optically active polymeric material with high thermal stabilityAdv. Opt. Mater.92100487

[91] [91] Yamasaki K, Juodkazis S, Matsuo S and Misawa H 2003 Three-dimensional micro-channels in polymers: one-step fabricationAppl. Phys.A77371–3

[92] [92] Day D and Gu M 2005 Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulsesOpt. Express135939–46

[93] [93] Scully P J, Jones D and Jaroszynski D A 2003 Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratingsJ. Opt.A5S92–S96

[94] [94] Bharadwaj Vet al2019 Femtosecond laser written photonic and microfluidic circuits in diamondJ. Phys. Photon.1022001

[95] [95] Ali B, Litvinyuk I V and Rybachuk M 2021 Femtosecond laser micromachining of diamond: current research status, applications and challengesCarbon179209–26

[96] [96] Martnez-Calderon M, Azkona J J, Casquero N, Rodrguez A, Domke M, Gmez-Aranzadi M, Olaizola S M and Granados E 2018 Tailoring diamond's optical properties via direct femtosecond laser nanostructuringSci. Rep.814262

[97] [97] Cai J W, Pan X T, Yuan H C, Zhang Y F, Meng F and Zhang M F 2020 Experimental study of diamond ablation based on femtosecond laserOptik217164838

[98] [98] Sotillo Bet al2017 Visible to infrared diamond photonics enabled by focused femtosecond laser pulsesMicromachines860

[99] [99] Huang M, Zhao F L, Cheng Y, Xu N and Xu Z Z 2009 Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamondPhys. Rev.B79125436

[100] [100] Courvoisier A, Booth M J and Salter P S 2016 Inscription of 3D waveguides in diamond using an ultrafast laserAppl. Phys. Lett.109031109

[101] [101] Capuano L, Tiggelaar R M, Berenschot J W, Gardeniers J G E and Rmer G R B E 2020 Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etchingOpt. Lasers Eng.133106114

[102] [102] Li Y, Liu H G and Hong M H 2020 High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablationOpt. Express286242–50

[103] [103] Chen Z H, Yuan H H, Wu P C, Zhao L, Zhang M N, Cao X W and Zhang W W 2021 Research on 3D high speed precision machining of sapphire based on femtosecond laserProc. SPIE11907119071D

[104] [104] Wen Q L, Wang H L, Cheng G H, Jiang F, Lu J and Xu X P 2020 Improvement of ablation capacity of sapphire by gold film-assisted femtosecond laser processingOpt. Lasers Eng.128106007

[105] [105] Vilar R, Sharma S P, Almeida A, Cangueiro L T and Oliveira V 2014 Surface morphology and phase transformations of femtosecond laser-processed sapphireAppl. Surf. Sci.288313–23

[106] [106] Gottmann J, Wortmann D and Hrstmann-Jungemann M 2009 Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etchingAppl. Surf. Sci.2555641–6

[107] [107] Liu X Q, Zhang Y L, Li Q K, Zheng J X, Lu Y M, Juodkazis S, Chen Q D and Sun H B 2022 Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribingPhotonix31

[108] [108] Lipateva T O, Lipatiev A S, Fedotov S S, Okhrimchuk A G, Lotarev S V and Sigaev V N 2021 Femtosecond laser-induced polarization-controlled birefringence inside Nd: YAG single crystalFrontiers in Optics 2021. JTh1A.2(Optica Publishing Group)

[109] [109] Hua J G, Yu F, Tian Z N, Yu Y H and Yu Y S 2017 Characterization of refractive index change induced by femtosecond laser in lithium niobateJ. Laser Micro/Nanoeng.12207–11

[110] [110] Lei Y H, Wang H J, Shayeganrad G and Kazansky P G 2021. Polarization controlled femtosecond laser induced birefringence in isotropic crystalsCLEO: Science and Innovations 2021. SM3B.7(Optica Publishing Group)

[111] [111] Shimotsuma Y, Hirao K, Qiu J R and Kazansky P G 2005 Nano-modification inside transparent materials by femtosecond laser single beamMod. Phys. Lett.B19225–38

[112] [112] Rdenas A, Gu M, Corrielli G, Pai P, John S, Kar A K and Osellame R 2019 Three-dimensional femtosecond laser nanolithography of crystalsNat. Photon.13105–9

[113] [113] Wei D Zet al2019 Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystalsNat. Commun.104193

[114] [114] Sun W G, Ji L F, Zheng J C, Wen Y N and Wang G Q 2022 High-aspect-ratio photonic-crystal structure of lithium niobate fabricated via femtosecond bessel beam direct writingChin. J. Lasers491002503

[115] [115] Wu P F, Yang S C, Ren Y Y and Liu H L 2021 Beam splitters fabricated by nonlinear focusing of femtosecond laser writing in pure YAG crystalFront. Phys.9719757

[116] [116] Xu X Yet al2022 Femtosecond laser writing of lithium niobate ferroelectric nanodomainsNature609496–501

[117] [117] Maruo S, Nakamura O and Kawata S 1997 Three-dimensional microfabrication with two-photon-absorbed photopolymerizationOpt. Lett.22132–4

[118] [118] Cumpston B Het al1999 Two-photon polymerization initiators for three-dimensional optical data storage and microfabricationNature39851–54

[119] [119] Ovsianikov Aet al2008 Two-photon polymerization of hybrid sol-gel materials for photonics applicationsLaser Chem.2008493059

[120] [120] Baldacchini T, Lafratta C N, Farrer R A, Teich M C, Saleh B E A, Naughton M J and Fourkas J T 2004 Acrylic-based resin with favorable properties for three-dimensional two-photon polymerizationJ. Appl. Phys.956072–6

[121] [121] Ushiba S, Shoji S, Masui K, Kuray P, Kono J and Kawata S 2013 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithographyCarbon59283–8

[122] [122] Yang D Y, Park S H, Lim T W, Kong H J, Yi S W, Yang H K and Lee K S 2007 Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerizationAppl. Phys. Lett.90013113

[123] [123] Nguyen L H, Straub M and Gu M 2005 Acrylate-based photopolymer for two-photon microfabrication and photonic applicationsAdv. Funct. Mater.15209–16

[124] [124] Juodkazis S, Mizeikis V, Seet K K, Miwa M and Misawa H 2005 Two-photon lithography of nanorods in SU-8 photoresistNanotechnology16846–9

[125] [125] Conradie E H and Moore D F 2002 SU-8 thick photoresist processing as a functional material for MEMS applicationsJ. Micromech. Microeng.12368–74

[126] [126] Teh W H, Drig U, Drechsler U, Smith C G and Gntherodt H J 2005 Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithographyJ. Appl. Phys.97054907

[127] [127] Chai N Y, Yue Y F, Chen X Y, Zeng Z L, Li S and Wang X W 2024 Isotropic sintering shrinkage of 3D glass-ceramic nanolattices: backbone preforming and mechanical enhancementInt. J. Extrem. Manuf.6025003

[128] [128] Ovsianikov Aet al2008 Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabricationACS Nano22257–62

[129] [129] Pertoldi L, Zega V, Comi C and Osellame R 2020 Dynamic mechanical characterization of two-photon-polymerized SZ2080 photoresistJ. Appl. Phys.128175102

[130] [130] Mizeikis V, Purlys V, Buividas R and Juodkazis S 2014 Realization of structural color by direct laser write technique in photoresistJ. Laser Micro/Nanoeng.942–45

[131] [131] Lin Z Y and Hong M H 2021 Femtosecond laser precision engineering: from micron, submicron, to nanoscaleUltrafast Sci.20219783514

[132] [132] Sugioka K and Cheng Y 2012 A tutorial on optics for ultrafast laser materials processing: basic microprocessing system to beam shaping and advanced focusing methodsAdv. Opt. Technol.1353–64

[133] [133] Serra P and Piqu A 2019 Laser-induced forward transfer: fundamentals and applicationsAdv. Mater. Technol.41800099

[134] [134] Hu Y X, Zhou Y, Luo G H, Li D G and Qu M N 2024 Femtosecond laser-induced nanoparticle implantation into flexible substrate for sensitive and reusable microfluidics SERS detectionInt. J. Extrem. Manuf.6045005

[135] [135] Matsuo S, Miyamoto T, Tomita T and Hashimoto S 2007 Applications of a microlens array and a photomask to the laser microfabrication of a periodic photopolymer rod arrayAppl. Opt.468264–7

[136] [136] Kondo T, Juodkazis S, Mizeikis V, Matsuo S and Misawa H 2006 Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithographyNew J. Phys.8250

[137] [137] Yamaji M, Kawashima H, Suzuki J, Tanaka S, Shimizu M, Hirao K, Shimotsuma Y and Miura K 2012 Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologramJ. Appl. Phys.111083107

[138] [138] Jiang L, Wang A D, Li B, Cui T H and Lu Y F 2018 Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and applicationLight Sci. Appl.717134

[139] [139] Zhang J Y, Xu Z Y, Kong Y F, Yu C W and Wu Y C 1998 Highly efficient, widely tunable, 10-Hz parametric amplifier pumped by frequency-doubled femtosecond Ti: sapphire laser pulsesAppl. Opt.373299–305

[140] [140] Zhang J, Wang S M, Wang M M and Chu Z Y 2019 Femtosecond laser double pulses nanofabrication on siliconIOP Conf. Ser.: Mater. Sci. Eng.565012018

[141] [141] Hernandez-Rueda J, Gtte N, Siegel J, Soccio M, Zielinski B, Sarpe C, Wollenhaupt M, Ezquerra T A, Baumert T and Solis J 2015 Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulsesACS Appl. Mater. Interfaces76613–9

[142] [142] Cheng H, Xia C, Sun M M, Zhang M, Kuebler S M and Yu X M 2020 Micro-and nanofabrication using Bessel-beam activated photopolymerizationJ. Laser Appl.32022067

[143] [143] Wetzel B, Xie C, Lacourt P A, Dudley J M and Courvoisier F 2013 Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beamsAppl. Phys. Lett.103241111

[144] [144] Li B H, Jiang L, Li X W, Wang Z P and Yi P 2024 Self-propelled Leidenfrost droplets on femtosecond-laser-induced surface with periodic hydrophobicity gradientInt. J. Extrem. Manuf.6025502

[145] [145] Rahimian M G, Jain A, Larocque H, Corkum P B, Karimi E and Bhardwaj V R 2020 Spatially controlled nano-structuring of silicon with femtosecond vortex pulsesSci. Rep.1012643

[146] [146] Gale G M, Gallot G, Hache F and Sander R 1997 Generation of intense highly coherent femtosecond pulses in the mid infraredOpt. Lett.221253–5

[147] [147] Audouard E and Mottay E 2023 High efficiency GHz laser processing with long burstsInt. J. Extrem. Manuf.5015003

[148] [148] Yamada M, Soma N, Tsuta M, Nakamura S, Ando N and Matsumoto F 2023 Development of a roll-to-roll high-speed laser micro processing machine for preparing through-holed anodes and cathodes of lithium-ion batteriesInt. J. Extrem. Manuf.5035004

[149] [149] Zwahr C, Serey N, Nitschke L, Bischoff C, Rdel U, Meyer A, Zhu P H and Pfleging W 2023 Targeting new ways for large-scale, high-speed surface functionalization using direct laser interference patterning in a roll-to-roll processInt. J. Extrem. Manuf.5035006

[150] [150] Fang W, Lei J, Zhang P D, Qin F, Jiang M L, Zhu X F, Hu D J, Cao Y Y and Li X P 2020 Multilevel phase supercritical lens fabricated by synergistic optical lithographyNanophotonics91469–77

[151] [151] Zhao M J, Hu J, Jiang L, Zhang K H, Liu P J and Lu Y F 2015 Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density controlSci. Rep.513202

[152] [152] Bhuyan M K, Courvoisier F, Lacourt P A, Jacquot M, Salut R, Furfaro L and Dudley J M 2010 High aspect ratio nanochannel machining using single shot femtosecond Bessel beamsAppl. Phys. Lett.97081102

[153] [153] Mitra S, Chanal M, Clady R, Mouskeftaras A and Grojo D 2015 Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machiningAppl. Opt.547358–65

[154] [154] Li J Q, Yan J F, Jiang L, Yu J C, Guo H and Qu L T 2023 Nanoscale multi-beam lithography of photonic crystals with ultrafast laserLight Sci. Appl.12164

[155] [155] Chen L, Cao K Q, Li Y L, Liu J K, Zhang S A, Feng D H, Sun Z R and Jia T Q 2021 Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lensOpt.-Electron Adv.4200036

[156] [156] Wang L, Gong W, Cao X W, Yu Y H, Juodkazis S and Chen Q D 2023 Holographic laser fabrication of 3D artificial compoundμ-eyesLight: Adv. Manuf.426

[157] [157] Li Ret al2023 Rapid fabrication of reconfigurable helical microswimmers with environmentally adaptive locomotionLight: Adv. Manuf.429

[158] [158] Du X H, Florian C and Arnold C B 2023 Single-lens dynamicz-scanning for simultaneousin situposition detection and laser processing focus controlLight: Sci. Appl.12274

[159] [159] Jiang L, Liu P J, Yan X L, Leng N, Xu C C, Xiao H and Lu Y F 2012 High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trainsOpt. Lett.372781–3

[160] [160] Wang Z, Jiang L, Li X W, Wang A D, Yao Z L, Zhang K H and Lu Y F 2018 High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etchingOpt. Lett.4398–101

[161] [161] Kiefer P, Hahn V, Kalt S, Sun Q, Eggeler Y M and Wegener M 2024 A multi-photon (7×7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens arrayLight: Adv. Manuf.2428–41

[162] [162] Zhang L R, Wang C W, Zhang C C, Xue Y H, Ye Z H, Xu L Q, Hu Y L, Li J W, Chu J R and Wu D 2024 High-throughput two-photon 3D printing enabled by holographic multi-foci high-speed scanningNano Lett.242671–9

[163] [163] Saha S K, Wang D E, Nguyen V H, Chang Y N, Oakdale J S and Chen S C 2019 Scalable submicrometer additive manufacturingScience366105–9

[164] [164] Jiao B J, Chen F Y, Liu Y C, Fan X H, Zeng S Q, Dong Q, Deng L M, Gao H and Xiong W 2023 Acousto-optic scanning spatial-switching multiphoton lithographyInt. J. Extrem. Manuf.5035008

[165] [165] Gnilitskyi I, Derrien T J Y, Levy Y, Bulgakova N M, Mocek T and Orazi L 2017 High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularitySci. Rep.78485

[166] [166] Liu T Qet al2024 Ultrahigh-printing-speed photoresists for additive manufacturingNat. Nanotechnol.1951–57

[167] [167] Mitchell A, Lafont U, Holyska M and Semprimoschnig C 2018 Additive manufacturing—A review of 4D printing and future applicationsAddit. Manuf.24606–26

[168] [168] Momeni F, Hassani N S M M, Liu X and Ni J 2017 A review of 4D printingMater. Des.12242–79

[169] [169] Huang J J, Xia S J, Li Z, Wu X W and Ren J N 2021 Applications of four-dimensional printing in emerging directions: review and prospectsJ. Mater. Sci. Technol.91105–20

[170] [170] Subeshan B, Baddam Y and Asmatulu E 2021 Current progress of 4D-printing technologyProg. Addit. Manuf.6495–516

[171] [171] Zafar M Q and Zhao H 2020 4D printing: future insight in additive manufacturingMet. Mater. Int.26564–85

[172] [172] Zhang M D, Deng C S, Fan X H, Zhang Z X, Chen A J, Tao Y F, Liu Y C, Jiao B Z, Gao H and Xiong W 2022 Recent advances in micro/Nano 4D PrintingChin. J. Lasers491002701

[173] [173] Zhang Y X, Wu D, Zhang Y C, Bian Y C, Wang C W, Li J W, Chu J R and Hu Y L 2023 Femtosecond laser direct writing of functional stimulus-responsive structures and applicationsInt. J. Extrem. Manuf.5042012

[174] [174] Zheng C L, Jin F, Zhao Y Y, Zheng M L, Liu J, Dong X Z, Xiong Z, Xia Y Z and Duan X M 2020 Light-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabricationSens. ActuatorsB304127345

[175] [175] Jiang S Jet al2020 Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transferNano Lett.207519–29

[176] [176] Hu Y Let al2020 Botanical-inspired 4D printing of hydrogel at the microscaleAdv. Funct. Mater.301907377

[177] [177] De Miguel G, Vicidomini G, Harke B and Diaspro A 2020 Linewidth and writing resolutionThree-Dimensional Microfabrication Using Two-Photon Polymerization2nd edn, T Baldacchini (William Andrew Publishing) pp 351–84

[178] [178] Chimmalgi A, Choi T Y, Grigoropoulos C P and Komvopoulos K 2003 Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopyAppl. Phys. Lett.821146–8

[179] [179] Casas I F and Kautek W 2018 Subwavelength nanostructuring of gold films by apertureless scanning probe lithography assisted by a femtosecond fiber laser oscillatorNanomaterials8536

[180] [180] Lin Y, Hong M H, Wang W J, Law Y Z and Chong T C 2005 Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laserAppl. Phys.A80461–5

[181] [181] Lin Y, Hong M H, Wang W J, Wang Z B, Chen G X, Xie Q, Tan L S and Chong T C 2007 Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopySens. ActuatorsA133311–16

[182] [182] Wang W J, Zhao R, Shi L P, Miao X S, Tan P K, Hong M H, Chong T C, Wu Y H and Lin Y 2005 Nonvolatile phase change memory nanocell fabrication by femtosecond laser writing assisted with near-field optical microscopyJ. Appl. Phys.98124313

[183] [183] Yan B, Yue L Y, Monks J N, Yang X B, Xiong D X, Jiang C L and Wang Z B 2020 Superlensing plano-convex-microsphere (PCM) lens for direct laser nano-marking and beyondOpt. Lett.451168–71

[184] [184] Liao Yet al2013 Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integrationLab Chip131626–31

[185] [185] Li Z Z, Wang L, Fan H, Yu Y H, Chen Q D, Juodkazis S and Sun H B 2020 O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environmentLight Sci. Appl. Light: Sci. Appl.941

[186] [186] Li L J, Gattass R R, Gershgoren E, Hwang H and Fourkas J T 2009 Achieving /20 resolution by one-color initiation and deactivation of polymerizationScience324910–13

[187] [187] Wollhofen R, Katzmann J, Hrelescu C, Jacak J and Klar T A 2013 120 nm resolution and 55 nm structure size in STED-lithographyOpt. Express2110831–40

[188] [188] Liu J K, Jia T Q, Zhou K, Feng D H, Zhang S A, Zhang H X, Jia X, Sun Z R and Qiu J R 2014 Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laserOpt. Express2232361–70

[189] [189] He X L, Datta A, Nam W, Traverso L M and Xu X F 2016 Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS)Sci. Rep.635035

[190] [190] Bhardwaj V R, Simova E, Rajeev P P, Hnatovsky C, Taylor R S, Rayner D M and Corkum P B 2006 Optically produced arrays of planar nanostructures inside fused silicaPhys. Rev. Lett.96057404

[191] [191] Taylor R, Hnatovsky C and Simova E 2008 Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glassLaser Photon. Rev.226–46

[192] [192] Lin Z Y, Liu H G, Ji L F, Lin W X and Hong M H 2020 Realization of~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient airNano Lett.204947–52

[193] [193] Potsaid B, Bellouard Y and Wen J T 2005 Adaptive scanning optical microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imagingOpt. Express136504–18

[194] [194] Hell S W and Wichmann J 1994 Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopyOpt. Lett.19780–2

[195] [195] Dong X Z, Zhao Z S and Duan X M 2008 Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabricationAppl. Phys. Lett.92091113

[196] [196] Takada K, Sun H B and Kawata S 2005 Improved spatial resolution and surface roughness in photopolymerization-based laser nanowritingAppl. Phys. Lett.86071122

[197] [197] Xing J F, Dong X Z, Chen W Q, Duan X M, Takeyasu N, Tanaka T and Kawata S 2007 Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiencyAppl. Phys. Lett.90131106

[198] [198] Fischer J, Von Freymann G and Wegener M 2010 The materials challenge in diffraction-unlimited direct-laser-writing optical lithographyAdv. Mater.223578–82

[199] [199] Cao Y Y, Gan Z S, Jia B H, Evans R A and Gu M 2011 High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerizationOpt. Express1919486–94

[200] [200] Sun H B, Suwa T, Takada K, Zaccaria R P, Kim M S, Lee K S and Kawata S 2004 Shape precompensation in two-photon laser nanowriting of photonic latticesAppl. Phys. Lett.853708–10

[201] [201] Liao C Y, Bouriauand M, Baldeck P L, Lon J C, Masclet C and Chung T T 2007 Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerizationAppl. Phys. Lett.91033108

[202] [202] Park S H, Lee S H, Yang D Y, Kong H J and Lee K S 2005 Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerizationAppl. Phys. Lett.87154108

[203] [203] Guo R, Xiao S Z, Zhai X M, Li J W, Xia A D and Huang W H 2006 Micro lens fabrication by means of femtosecond two photon photopolymerizationOpt. Express14810–16

[204] [204] Wu D, Wu S Z, Niu L G, Chen Q D, Wang R, Song J F, Fang H H and Sun H B 2010 High numerical aperture microlens arrays of close packingAppl. Phys. Lett.97031109

[205] [205] Tan D F, Li Y, Qi F J, Yang H, Gong Q H, Dong X Z and Duan X M 2007 Reduction in feature size of two-photon polymerization using SCR500Appl. Phys. Lett.90071106

[206] [206] Jin F, Liu J, Zhao Y Y, Dong X Z, Zheng M L and Duan X M 2022 /30 inorganic features achieved by multi-photon 3D lithographyNat. Commun.131357

[207] [207] Fischer J and Wegener M 2013 Three-dimensional optical laser lithography beyond the diffraction limitLaser Photon. Rev.722–44

[208] [208] Fischer J and Wegener M 2011 Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [invited]Opt. Mater. Express1614–24

[209] [209] Scott T F, Kowalski B A, Sullivan A C, Bowman C N and McLeod R R 2009 Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithographyScience324913–7

[210] [210] Gan Z S, Cao Y Y, Evans R A and Gu M 2013 Three-dimensional deep subdiffraction optical beam lithography with 9 nm feature sizeNat. Commun.42061

[211] [211] Gan Z S, Cao Y Y, Jia B H and Gu M 2012 Dynamic modeling of superresolution photoinduced-inhibition nanolithographyOpt. Express2016871–9

[212] [212] Hahn V, Messer T, Bojanowski N M, Curticean E R, Wacker I, Schrder R R, Blasco E and Wegener M 2021 Two-step absorption instead of two-photon absorption in 3D nanoprintingNat. Photon.15932–8

[213] [213] Chen W and Bottoms W R 2017 Heterogeneous integration roadmapProc. 2017 Int. Conf. on Electronics Packaging(IEEE) pp 302–25

[214] [214] Ben Yoo S J, Guan B B and Scott R P 2016 Heterogeneous 2D/3D photonic integrated microsystemsMicrosyst. Nanoeng.216030

[215] [215] Park M, Bae B, Kim T, Kum H S and Lee K 2022 2D materials-assisted heterogeneous integration of semiconductor membranes toward functional devicesJ. Appl. Phys.132190902

[216] [216] Haider A J, Alawsi T, Haider M J, Taha B A and Marhoon H A 2022 A comprehensive review on pulsed laser deposition technique to effective nanostructure production: trends and challengesOpt. Quantum Electron.54488

[217] [217] Masood K B, Kumar P, Malik M A and Singh J 2021 A comprehensive tutorial on the pulsed laser deposition technique and developments in the fabrication of low dimensional systems and nanostructuresEmerg. Mater.4737–54

[218] [218] Meng Yet al2023 Photonic van der Waals integration from 2D materials to 3D nanomembranesNat. Rev. Mater.8498–517

[219] [219] De Mesa J A, Rillera A P, Empizo M J F, Sarukura N, Sarmago R V and Garcia W O 2021 Low-energy femtosecond pulsed laser deposition of cerium (IV) oxide thin films on silicon substratesJ. Cryst. Growth574126323

[220] [220] Nasu Y, Kohtoku M, Hibino Y and Inoue Y 2009 Waveguide interconnection in silica-based planar lightwave circuit using femtosecond laserJ. Lightwave Technol.274033–9

[221] [221] Xu Bet al2016 High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabricationSci. Rep.619989

[222] [222] Guan B Bet al2014 Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuitOpt. Express22145–56

[223] [223] Wu D, Wu S Z, Xu J, Niu L G, Midorikawa K and Sugioka K 2014 Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochipLaser Photon. Rev.8458–67

[224] [224] Bakhchova L, Jonuauskas L, Andrijec D, Kurachkina M, Baravykas T, Eremin A and Steinmann U 2020 Femtosecond laser-based integration of nano-membranes into organ-on-a-chip systemsMaterials133076

[225] [225] Wu D, Niu L G, Wu S Z, Xu J, Midorikawa K and Sugioka K 2015 Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rateLab Chip151515–23

[226] [226] Serien D, Kawano H, Miyawaki A, Midorikawa K and Sugioka K 2018 Femtosecond laser direct write integration of multi-protein patterns and 3D microstructures into 3D glass microfluidic devicesAppl. Sci.8147

[227] [227] Liu S F, Hou Z W, Lin L H, Li F, Zhao Y, Li X Z, Zhang H, Fang H H, Li Z C and Sun H B 2022 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bondingScience3771112–6

[228] [228] Sun T M, Huo J P, Xiao Y, Liu L, Feng B, Zhai X, Wang W X and Zou G S 2022 Atomic bonding-engineered heterogeneous integration of semiconductor nanowires by femtosecond laser irradiation for a miniaturized photodetectorAppl. Surf. Sci.575151709

[229] [229] Sima F, Sugioka K, Vzquez R M, Osellame R, Kelemen L and Ormos P 2018 Three-dimensional femtosecond laser processing for lab-on-a-chip applicationsNanophotonics7613–34

[230] [230] Wen Y D, Yu H B, Zhang Y Z, Qiu Y, Li P W, Wang X D, Jia B L, Liu L Q and Li W J 2021 Recent advances in femtosecond laser fabrication: from structures to applicationsIEEE Open J. Nanotechnol.2161–77

[231] [231] Sugioka K, Xu J, Wu D, Hanada Y, Wang Z K, Cheng Y and Midorikawa K 2014 Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glassLab Chip143447–58

[232] [232] Choudhury D, Ramsay W T, Kiss R, Willoughby N A, Paterson L and Kar A K 2012 A 3D mammalian cell separator biochipLab Chip12948–53

[233] [233] Sugioka K and Cheng Y 2014 Fabrication of 3D microfluidic structures inside glass by femtosecond laser micro-machiningAppl. Phys.A114215–21

[234] [234] Li Y and Qu S L 2013 Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chipsCurr. Appl. Phys.131292–95

[235] [235] Li X Y, Yuan G, Yu W L, Xing J, Zou Y T, Zhao C, Kong W C, Yu Z and Guo C L 2019 A self-driven microfluidic surface-enhanced Raman scattering device for Hg2+ detection fabricated by femtosecond laserLab Chip20414–23

[236] [236] Cai Z Het al2023 Encrypted optical fiber tag based on encoded fiber Bragg grating arrayInt. J. Extrem. Manuf.5035502

[237] [237] ukauskas A, Melissinaki V, Kakelyte D, Farsari M and Malinauskas M 2014 Improvement of the Fabrication Accuracy of Fiber Tip Microoptical Components via Mode Field ExpansionJ. Laser Micro/Nanoeng.968–72

[238] [238] Brasselet E, Malinauskas M,ukauskas A and Juodkazis S 2010 Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentumAppl. Phys. Lett.97211108

[239] [239] Liu Y, Li X W, Wang Z P, Qin B, Zhou S P, Huang J and Yao Z L 2022 Morphology adjustable microlens array fabricated by single spatially modulated femtosecond pulseNanophotonics11571–81

[240] [240] Sanli U T, Rodgers G, Zdora M C, Qi P, Garrevoet J, Falch K V, Mller B, David C and Vila-Comamala J 2023 Apochromatic x-ray focusingLight Sci. Appl.12107

[241] [241] Li B Zet al2024 Femtosecond laser 3D printed micro objective lens for ultrathin fiber endoscopeFundam. Res.4123–30

[242] [242] Yang T Z, Li M J, Yang Q, Lu Y, Cheng Y, Zhang C J, Du B, Hou X and Chen F 2022 Femtosecond laser fabrication of submillimeter microlens arrays with tunable numerical aperturesMicromachines131297

[243] [243] Wu P C, Cao X W, Chen Z H, Yuan H B, Yu J T, Juodkazis S and Zhang W W 2023 Fabrication of cylindrical microlens by femtosecond laser-assisted hydrofluoric acid wet etching of fused silicaAdv. Photon. Res.42200227

[244] [244] Goi E, Mashford B S, Cumming B P and Gu M 2016 Tuning the refractive index in gyroid photonic crystals via lead-chalcogenide nanocrystal coatingAdv. Opt. Mater.4226–30

[245] [245] Goi E, Yue Z J, Cumming B P and Gu M 2018 Observation of type I photonic weyl points in optical frequenciesLaser Photon. Rev.121700271

[246] [246] Wei D Zet al2018 Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystalNat. Photon.12596–600

[247] [247] Liu S, Switkowski K, Xu C L, Tian J, Wang B X, Lu P X, Krolikowski W and Sheng Y 2019 Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystalsNat. Commun.103208

[248] [248] Zhizhchenko Aet al2019 Single-mode lasing from imprinted halide-perovskite microdisksACS Nano134140–47

[249] [249] Mao W Q, Li H N, Tang B, Zhang C, Liu L, Wang P, Dong H X and Zhang L 2023 Laser patterning of large-scale perovskite single-crystal-based arrays for single-mode laser displaysInt. J. Extrem. Manuf.5045001

[250] [250] Toroghi S and Kik P G 2011 Design of cascaded plasmon resonances for ultrafast nonlinear optical switchingProc. SPIE805480540E

[251] [251] Gissibl T, Thiele S, Herkommer A and Giessen H 2016 Two-photon direct laser writing of ultracompact multi-lens objectivesNat. Photon.10554–60

[252] [252] Presti D A, Guarepi V, Videla F and Torchia G A 2020 Design and implementation of an integrated optical coupler by femtosecond laser written-waveguides in LiNbO3Opt. Lasers Eng.126105860

[253] [253] Yuan L, Huang J, Lan X W, Wang H Z, Jiang L and Xiao H 2014 All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etchingOpt. Lett.392358–61

[254] [254] Dmitriev P A, Makarov S V, Milichko V A, Mukhin I S, Gudovskikh A S, Sitnikova A A, Samusev A K, Krasnok A E and Belov P A 2016 Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonicsNanoscale85043–48

[255] [255] Kalli Ket al2015 Flat fibre and femtosecond laser technology as a novel photonic integration platform for optofluidic based biosensing devices and lab-on-chip applications: current results and future perspectivesSens. ActuatorsB2091030–40

[256] [256] Donko A, Beresna M, Jung Y, Hayes J, Richardson D J and Brambilla G 2018 Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiberOpt. Express262039–44

[257] [257] Kudryashov S Iet al2019 High-throughput micropatterning of plasmonic surfaces by multiplexed femtosecond laser pulses for advanced IR-sensing applicationsAppl. Surf. Sci.484948–56

[258] [258] Sun Y L, Dong W F, Niu L G, Jiang T, Liu D X, Zhang L, Wang Y S, Chen Q D, Kim D P and Sun H B 2014 Protein-based soft micro-optics fabricated by femtosecond laser direct writingLight Sci. Appl.3e129

[259] [259] Low M J, Lee H, Lim C H J, Suchand Sandeep C S, Murukeshan V M, Kim S W and Kim Y J 2020 Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writingAppl. Surf. Sci.526146647

[260] [260] Zou M Q, Liao C R, Chen Y P, Xu L, Tang S, Xu G X, Ma K, Zhou J T, Cai Z H and Li B Z 2023 3D printed fiber-optic nanomechanical bioprobeInt. J. Extrem. Manuf.5015005

[261] [261] Schell A W, Kaschke J, Fischer J, Henze R, Wolters J, Wegener M and Benson O 2013 Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructuresSci. Rep.31577

[262] [262] Nocentini S, Riboli F, Burresi M, Martella D, Parmeggiani C and Wiersma D S 2018 Three-dimensional photonic circuits in rigid and soft polymers tunable by lightACS Photonics53222–30

[263] [263] Zhang S Yet al2019High-Qpolymer microcavities integrated on a multicore fiber facet for vapor sensingAdv. Opt. Mater.71900602

[264] [264] Wei H M and Krishnaswamy S 2017 Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detectionOpt. Lett.422655–8

[265] [265] Siegle T, Schierle S, Kraemmer S, Richter B, Wondimu S F, Schuch P, Koos C and Kalt H 2017 Photonic molecules with a tunable inter-cavity gapLight Sci. Appl.6e16224

[266] [266] Wang C Let al2021 High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonicsLight sci. Appl.10139

[267] [267] Xin Cet al2021 Environmentally adaptive shape-morphing microrobots for localized cancer cell treatmentACS Nano1518048–59

[268] [268] Ma Z C, Zhang Y L, Han B, Hu X Y, Li C H, Chen Q D and Sun H B 2020 Femtosecond laser programmed artificial musculoskeletal systemsNat. Commun.114536

[269] [269] Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M and Wiersma D S 2015 Light-fueled microscopic walkersAdv. Mater.273883–7

[270] [270] Dong Met al2020 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cellsAdv. Funct. Mater.301910323

[271] [271] Zhang Y L, Tian Y, Wang H, Ma Z C, Han D D, Niu L G, Chen Q D and Sun H B 2019 Dual-3D femtosecond laser nanofabrication enables dynamic actuationACS Nano134041–48

[272] [272] Xin Cet al2019 Conical hollow microhelices with superior swimming capabilities for targeted cargo deliveryAdv. Mater.311808226

[273] [273] Yang Let al2019 Targeted single-celltherapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vorticesAdv. Funct. Mater.291905745

[274] [274] Peters C, Ergeneman O, Garca P D W, Mller M, Pan S, Nelson B J and Hierold C 2014 Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applicationsAdv. Funct. Mater.245269–76

[275] [275] Xiong Z, Zheng C L, Jin F, Wei R M, Zhao Y Y, Gao X Z, Xia Y Z, Dong X Z, Zheng M L and Duan X M 2018 Magnetic-field-driven ultra-sma 3D hydrogel microstructures: preparation of gel photoresist and two-photon polymerization microfabricationSens. Actuators B274541–50

[276] [276] Bozuyuk U, Yasa O, Yasa I C, Ceylan H, Kizilel S and Sitti M 2018 Light-triggered drug release from 3D-printed magnetic chitosan microswimmersACS Nano129617–25

[277] [277] Jin D D, Chen Q Y, Huang T Y, Huang J Y, Zhang L and Duan H L 2020 Four-dimensional direct laser writing of reconfigurable compound micromachinesMater. Today3219–25

[278] [278] Park J, Jin C, Lee S, Kim J Y and Choi H 2019 Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapyAdv. Healthcare Mater.81900213

[279] [279] Jin X R, Sun Y Q, Wu Q, Jia Z X, Huang S, Yao J H, Huang H and Xu J J 2019 High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin siliconACS Appl. Mater. Interfaces1142385–91

[280] [280] An J N, Le T S D, Huang Y, Zhan Z Y, Li Y, Zheng L X, Huang W, Sun G Z and Kim Y J 2017 All-graphene-based highly flexible noncontact electronic skinACS Appl. Mater. Interfaces944593–601

[281] [281] Yu Y, Wang S, Li R, Hou T, Chen M and Hu A 2017 Photonic nanomanufacturing of high performance energy device on flexible substrateProc. SPIE10092100920R

[282] [282] Le T S D, Park S, An J, Lee P S and Kim Y J 2019 Ultrafast laser pulses enable one-step qraphene patterning on woods and leaves for green electronicsAdv. Funct. Mater.291902771

[283] [283] Ji S Y, Choi W, Kim H Y, Jeon J W, Cho S H and Chang S C 2018 Fully solution-processable fabrication of multi-layered circuits on a flexible substrate using laser processingMaterials11268

[284] [284] Avila O I, Santos M V, Shimizu F M, Almeida G F B, Siqueir J P, Andrade M B, Balogh D T, Ribeiro S J L and Mendonca C R 2018 Direct femtosecond laser printing of PPV on bacterial cellulose-based paper for flexible organic devicesMacromol. Mater. Eng.3031800265

[285] [285] Wu L X, Meng L, Wang Y Y, Lv M, Ouyang T Y, Wang Y L and Zeng X Y 2023 Fabrication of polyetheretherketone (PEEk)-based 3D electronics with fine resolution by a hydrophobic treatment assisted hybrid additivemanufacturing methodInt. J. Extrem. Manuf.5035003

[286] [286] Yang Let al2023 Laser printed microelectronicsNat. Commun.141103

[287] [287] Cordeiro A Set al2020 Two-photon polymerisation 3D printing of microneeale array templates with versatle designs: application in the development of polymeric drugdelivery systemsPharm. Res.37174

[288] [288] Ovsianikov A, Chichkov B, Mente P, Monteiro-riviere N A, Doraiswamy A and Narayan R J 2007 Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug deliveryInt. J. Appl. Ceram. Technol.422–29

[289] [289] Rad Z F, Nordon R E, Anthony C J, Bilston L, Prewett P D, Arns J Y, Arns C H, Zhang L C and Davies G J 2017 High-fidelity replication of thermoplastic microneedles with open microfluidic channelsMicrosyst. Nanoeng.317034

[290] [290] Balmert S C, Carey C D, Falo G D, Sethi S K, Erdos G, Korkmaz E and Falo L D 2020 Dissolving undercut microneedle arrays for multicomponent cutaneous vaccinationJ. Control Release317336–46

[291] [291] Jonuauskas Let al2023 Femtosecond laser-made 3D micro-chainmail scaffolds towards regenerative medicineOpt. Laser Technol.162109240

[292] [292] Malinauskas Met al2014 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablationMicromachines5839–58

[293] [293] Rovira D S, Nielsen H M, Taboryski R and Bunea A I 2021 Additive manufacturing of polymeric scaffolds for biomimetic cell membrane engineeringMater. Des.201109486

[294] [294] Weisgrab G, Guillaume O, Guo Z C, Heimel P, Slezak P, Poot A, Grijpma D and Ovsianikov A 2020 3D printing of large-scale and highly porous biodegradable tissue engineering scaffolds from poly (trimethylene-carbonate) using two-photonpolymerizationBiofabrication12045036

[295] [295] Zhang Q M, Yu H Y, Barbiero M, Wang B K and Gu M 2019 Artificial neural networks enabled by nanophotonicsLight Sci. Appl.842

[296] [296] Gu M, Dong Y B, Yu H Y, Luan H T and Zhang Q M 2023Perspective on 3D vertically-integrated photonic neural networks based on VCSEL arrays Nanophotonics12827–32

[297] [297] Yu H Y, Zhang Q M, Cumming B P, Goi E, Cole J H, Luan H T, Chen X and Gu M 2021 Neuron-inspired Steiner tree networks for 3D low-density metastructuresAdv. Sci.82100141

[298] [298] Shastri B J, Tait A N, Ferreira De Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R 2021 Photonics for artificial intelligence and neuromorphic computingNat. Photon.15102–14

[299] [299] Li M, Zhang Q, Chen Y, Ren X F, Gong Q H and Li Y 2020 Femtosecond laser direct writing of integrated photonic quantum chips for generating path-encoded bell statesMicromachines111111

[300] [300] Goi E, Chen X, Zhang Q M, Cumming B P, Schoenhardt S, Luan H T and Gu M 2021 Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chipLight Sci. Appl.1040

[301] [301] Goi E, Schoenhardt S and Gu M 2022 Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networksNat. Commun.137531

[302] [302] Yu M Jet al2022 Integrated femtosecond pulse generator on thin-film lithium niobateNature612252–8

[303] [303] Liu K L, Ding H B, Li S, Niu Y F, Zeng Y, Zhang J N, Du X and Gu Z Z 2022 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithographyNat. Commun.134563

[304] [304] Zhang L Ret al2022 Functional shape-morphing microarchitectures fabricated by dynamic hologra-phically shifted femtosecond multifociNano Lett.135277–86

[305] [305] Wang C Wet al2019 Multilayered skyscraper microchips fabricated by hybrid ‘all-in-one’ femtosecond laser processingMicrosyst. Nanoeng.517

[306] [306] Han F, Gu S Y, Klimas A, Zhao N, Zhao Y X and Chen S C 2022 Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assemblyScience3781325–31

[307] [307] Zhang B, Wang Z, Tan D Z and Qiu J R 2023 Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applicationsPhotoniX424

[308] [308] Yuan Y J, Jiang L, Li X, Zuo P, Zhang X Q, Lian Y L, Ma Y L, Liang M S, Zhao Y and Qu L T 2022 Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitorsAdv. Mater.342110013

[309] [309] Yuan Y Jet al2020 Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabricationNat. Commun.116185

[310] [310] Geng J, Xu L Y, Yan W, Shi L P, Qiu Met al2023 High-speed laser writing of structural colors for full-color inkless printingNat. Commun.14565

[311] [311] Li Z Zet al2024 Super-stealth dicing of transparent solids with nanometric precisionNat. Photon.18799–808

[312] [312] Goi E, Zhang Q M, Chen X, Luan H T, Gu Met al2020 Perspective on photonic memristive neuromorphic computingPhotoniX13

Tools

Get Citation

Copy Citation Text

Gao Le, Zhang Qiming, Gu Min. Femtosecond laser micro/nano processing: from fundamental to applications[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 22010

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Dec. 20, 2023

Accepted: May. 29, 2025

Published Online: May. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ad943e

Topics