Semiconductor Optoelectronics, Volume. 46, Issue 4, 687(2025)
Investigation of Fermi Level Depinning Effect of Self-Assembled Molecular Monolayers on Germanium Surface
[1] [1] Maeda T, Ikeda K, Nakaharai S, et al. High mobility Ge-on-insulator p-channel MOSFETs using Pt germanide Schottky source/drain[J]. IEEE Electron Device Letters, 2005, 26(2): 102-104.
[2] [2] Pillarisetty R. Academic and industry research progress in germanium nanodevices[J]. Nature, 2011, 479(7373): 324-328.
[3] [3] Statz H, Demars G A, Davis L, et al. Surface states on silicon and germanium surfaces[J]. Physical Review, 1956, 101(4): 1272-1281.
[4] [4] Wager J F, Robertson J. Metal-induced gap states modeling of metal-Ge contacts with and without a silicon nitride ultrathin interfacial layer[J]. Journal of Applied Physics, 2011, 109(9): 094501.
[5] [5] Zhou Y, Ogawa M, Han X, et al. Alleviation of Fermi-level pinning effect on metal/germanium interface by insertion of an ultrathin aluminum oxide[J]. Applied Physics Letters, 2008, 93(20): 202105.
[6] [6] Liu G, Zhang M, Xue Z, et al. Fermi level depinning in Ti/n-type Ge Schottky junction by the insertion of fluorinated graphene[J]. Journal of Alloys and Compounds, 2019, 794: 218-222.
[7] [7] Seo Y, Lee T I, Ahn H J, et al. Fermi level depinning in Ti/GeO2/n-Geviathe interfacial reaction between Ti and GeO2[J]. IEEE Transactions on Electron Devices, 2017, 64(10): 4242-4245.
[8] [8] Suzuki A, Nakatsuka O, Sakashita M, et al. Modulation of Fermi level pining position at metal/n-Ge interface by semimetal Ge1−xSnx and Sn interlayers[J]. Materials Science in Semiconductor Processing, 2017, 70: 162-166.
[9] [9] Berghuis W J H, Melskens J, Macco B, et al. Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers[J]. Journal of Materials Research, 2021, 36(3): 571-581.
[10] [10] Kim H, McIntyre P C, Chui C O, et al. Interfacial characteristics of HfO2 grown on nitrided Ge (100) substrates by atomic-layer deposition[J]. Applied Physics Letters, 2004, 85(14): 2902-2904.
[11] [11] Bodlaki D, Yamamoto H, Waldeck D H, et al. Ambient stability of chemically passivated germanium interfaces[J]. Surface Science, 2003, 543(1/3): 63-74.
[12] [12] Cai Q, Xu B, Ye L, et al. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation[J]. Applied Surface Science, 2015, 353: 890-901.
[13] [13] Mkinen A J, Kushto G P. Monolayer-induced band bending in the near-surface region of Ge(111)[J]. Physical Review B, 2011, 83(24): 245315.
[14] [14] Garvey S, Maccioni B, Serino A C, et al. Effect of alkanethiol chain length on the oxidation resistance of self-assembled monolayer passivated Ge(100) surfaces[J]. Thin Solid Films, 2023, 778: 139875.
[15] [15] Wang W, Wang J, Zhao M, et al. Fermi level depinning by a C-containing layer in a metal/Ge structure by using a chemical bath[J]. Journal of Semiconductors, 2012, 33(10): 102004.
[16] [16] Matsui M, Murakami H, Fujioka T, et al. Characterization of chemical bonding features at metal/GeO2 Interfaces by X-ray photoelectron spectroscopy[J]. Microelectronic Engineering, 2011, 88(7): 1549-1552.
[17] [17] Sun S, Sun Y, Liu Z, et al. Surface termination and roughness of Ge(100) cleaned by HF and HCl solutions[J]. Applied Physics Letters, 2006, 88(2): 021903.
[18] [18] Dubey M, Gouzman I, Bernasek S L, et al. Characterization of self-assembled organic films using differential charging in X-ray photoelectron spectroscopy[J]. Langmuir, 2006, 22(10): 4649-4653.
[19] [19] Gao X, Guan B, Mesli A, et al. Toward defect-free doping by self-assembled molecular monolayers: the evolution of interstitial carbon-related defects in phosphorus-doped silicon[J]. ACS Omega, 2019, 4(2): 3539-3545.
[20] [20] Nishimura T, Kita K, Toriumi A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface[J]. Applied Physics Letters, 2007, 91(12): 123123.
[21] [21] Racko J, Grmanov A, Breza J. Extended thermionic emission-diffusion theory of charge transport through a Schottky diode[J]. Solid-State Electronics, 1996, 39(3): 391-397.
[22] [22] Crowell C R. The Richardson constant for thermionic emission in Schottky barrier diodes[J]. Solid-State Electronics, 1965, 8(4): 395-399.
[23] [23] Sze S M, Ng K K. Physics of Semiconductor Devices[M]. New York: Wiley, 2006.
[24] [24] Dubois E, Larrieu G. Measurement of low Schottky barrier heights applied to metallic source/drain metal–oxide–semiconductor field effect transistors[J]. Journal of Applied Physics, 2004, 96(1): 729-737.
[25] [25] Tung R T. Electron transport at metal-semiconductor interfaces: general theory[J]. Physical Review B, 1992, 45(23): 13509-13523.
[26] [26] Dutta M, Basak D. P-ZnO∕n-siheterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism[J]. Applied Physics Letters, 2008, 92(21): 212112.
[27] [27] Rivillon S, Chabal Y J, Amy F, et al. Hydrogen passivation of germanium(100) surface using wet chemical preparation[J]. Applied Physics Letters, 2005, 87(25): 253101.
[28] [28] Schwartz B, Robbins H. Chemical etching of germanium in solutions of HF, HNO3, H2O, and HC2H3O2[J]. Journal of the Electrochemical Society, 1964, 111(2): 196.
[29] [29] Weng C C, Liao J D, Wu Y T, et al. Modification of monomolecular self-assembled films by nitrogen-oxygen plasma[J]. The Journal of Physical Chemistry B, 2006, 110(25): 12523-12529.
[30] [30] Srisombat L, Jamison A C, Lee T R. Stability: a key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390(1/3): 1-19.
[31] [31] Ramos N C, Will Medlin J, Holewinski A. Electrochemical stability of thiolate self-assembled monolayers on Au, Pt, and Cu[J]. ACS Applied Materials & Interfaces, 2023, 15(11): 14470-14480.
[32] [32] Garvey S, Serino A, Maccioni M B, et al. Towards Ge-based electronic devices: increased longevity of alkanethiol-passivated Ge(100) in low humidity environments[J]. Thin Solid Films, 2022, 759: 139466.
Get Citation
Copy Citation Text
GUO Yuxin, ZHANG Guiyin, LI Yunyao, GAO Xuejiao. Investigation of Fermi Level Depinning Effect of Self-Assembled Molecular Monolayers on Germanium Surface[J]. Semiconductor Optoelectronics, 2025, 46(4): 687
Category:
Received: Mar. 10, 2025
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: