Chinese Journal of Lasers, Volume. 52, Issue 12, 1202105(2025)

A Lightweight Real‐Time Weld Defect Classification Model

Yunhao Li*, Chengtie Li, and Qiuming Li**
Author Affiliations
  • School of Control Engineering, Northeastern University at Qinhuangdao Campus, Qinhuangdao 066004, Hebei , China
  • show less
    Figures & Tables(11)
    Schematic diagrams of models. (a) YOLOv8n-cls model; (b) TDRE-YOLO-cls model
    Schematic diagram of RCR module
    Schematic diagrams of RepConv. (a)Training multi-branch structure;(b)convolutional layer and batch normalization layer fusion;(c)inference single convolution
    Schematic diagram of DPSA module
    Schematic diagram of CSE module
    Sample set examples. (a) Burr defect; (b) dimpling defect; (c) pore defect ; (d) no obvious defect
    Accuracy change curves
    • Table 1. Comparison of results of classification models on validation set

      View table

      Table 1. Comparison of results of classification models on validation set

      Model

      Top-1 /

      %

      Weighted

      precision /%

      Weighted

      recall /%

      YOLOv8n-cls82.582.52282.776
      YOLOv11n-cls82.181.99882.245
      YOLOv8s-cls83.483.44383.929
      YOLOv11s-cls82.382.26182.752
      TDRE-YOLO-cls84.884.76084.885
    • Table 2. Comparison of results of classification models on test set

      View table

      Table 2. Comparison of results of classification models on test set

      ModelTop-1 /%Weighted precision /%Weighted recall /%Time /msSize/kB
      YOLOv8n-cls81.681.60481.7580.92907
      YOLOv11n-cls81.981.86782.2230.93124
      YOLOv8s-cls81.781.73682.0911.410028
      YOLOv11s-cls82.182.13182.5581.410784
      Mobilenetv382.482.37082.6893.96078
      Shufflenetv280.980.94481.1084.45086
      TDRE-YOLO-cls84.083.97283.9980.91393
    • Table 3. Comparison of ablation experimental results

      View table

      Table 3. Comparison of ablation experimental results

      ModelTop-1 /%Weighted precision /%Weighted recall /%Time /msSize/kB
      Model_NoRCR82.882.79083.1590.91373
      Model_NoSPP81.581.47281.9081.01704
      Model_NoDSPA81.581.47481.9821.02570
      TDR-YOLO-cls83.683.57682.8330.91385
      TDRE-YOLO-cls84.083.97283.9980.91393
    • Table 4. Precisions of classification models on four samples

      View table

      Table 4. Precisions of classification models on four samples

      ModelPrecision /%
      Burr defectDimpling defectPore defectNo obvious defect
      YOLOv8n-cls81.64680.00083.07782.069
      YOLOv11n-cls84.68874.55683.07783.098
      YOLOv8s-cls81.95781.48180.76982.428
      YOLOv11s-cls86.25072.18984.61582.394
      TDRE-YOLO-cls85.53581.92883.96982.877
    Tools

    Get Citation

    Copy Citation Text

    Yunhao Li, Chengtie Li, Qiuming Li. A Lightweight Real‐Time Weld Defect Classification Model[J]. Chinese Journal of Lasers, 2025, 52(12): 1202105

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Forming Manufacturing

    Received: Nov. 26, 2024

    Accepted: Mar. 6, 2025

    Published Online: May. 28, 2025

    The Author Email: Yunhao Li (872047087@qq.com), Qiuming Li (2272268@stu.neu.edu.cn)

    DOI:10.3788/CJL241390

    CSTR:32183.14.CJL241390

    Topics