Chinese Optics Letters, Volume. 20, Issue 7, 073701(2022)

Tunable broadband terahertz absorber based on laser-induced graphene

Jingxuan Lan1, Rongxuan Zhang1, Hao Bai1, Caidie Zhang1, Xu Zhang1, Wei Hu2, Lei Wang1,2,3、*, and Yanqing Lu2
Author Affiliations
  • 1College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 2National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
  • 3State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • show less
    References(28)

    [1] J. Federici, L. Moeller. Review of terahertz and subterahertz wireless communications. J. Appl. Phys., 107, 111101(2010).

    [2] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97(2007).

    [3] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371(2016).

    [4] Y. Shen, Z. Shen, G. Zhao, W. Hu. Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator. Chin. Opt. Lett., 18, 080003(2020).

    [5] H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor. A metamaterial solid-state terahertz phase modulator. Nat. Photonics, 3, 148(2009).

    [6] H. Zhuang, C. Liu, F. Li, J. Zhuang, K. Li. Tunable plasmonic filter based on parallel bulk Dirac semimetals at terahertz frequencies. Appl. Opt., 60, 3634(2021).

    [7] H. Sun, J. Yang, H. Liu, D. Wu, X. Zheng. Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials. Chin. Opt. Lett., 19, 013602(2021).

    [8] Y. Chen, J. Li, C. He, J. Qin, X. Chen, S. Li. Enhancement of high transmittance and broad bandwidth terahertz metamaterial filter. Opt. Mater., 115, 111029(2021).

    [9] H. Deljoo, A. Rostami. Broadband terahertz absorber using superimposed graphene quantum dots. Opt. Quantum Electron., 53, 442(2021).

    [10] J. Bai, Z. Pang, P. Shen, T. Chen, W. Shen, S. Wang, S. Chang. A terahertz photo-thermoelectric detector based on metamaterial absorber. Opt. Commun., 497, 127184(2021).

    [11] Z. Shen, S. Li, Y. Xu, W. Yin, X. Chen. Three-dimensional printed ultrabroadband terahertz metamaterial absorbers. Phys. Rev. Appl., 16, 014066(2021).

    [12] J. Xiao, R. Xiao, R. Zhang, Z. Shen, W. Hu, L. Wang, Y. Lu. Tunable terahertz absorber based on transparent and flexible metamaterial. Chin. Opt. Lett., 18, 092403(2020).

    [13] M. Rahm, J. S. Li, W. J. Padilla. THz wave modulators: a brief review on different modulation techniques. J. Infrared Millim. Terahertz Waves, 34, 1(2012).

    [14] K. D. Xu, J. Li, A. Zhang, Q. Chen. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express, 28, 11482(2020).

    [15] T. Hu, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express, 16, 7181(2008).

    [16] F. J. Bosquespadilla, L. N. Landy, W. K. Smith, J. D. Smith, E. Padilla, S. Sajuyigbe. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [17] J. Huang, T. Fu, H. Li, Z. Shou, X. Gao. A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface. Chin. Opt. Lett., 18, 013102(2020).

    [18] X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett., 101, 207402(2012).

    [19] J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. Cumming. Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett., 36, 3476(2011).

    [20] J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour. Laser-induced porous graphene films from commercial polymers. Nat. Commun., 5, 5714(2014).

    [21] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183(2007).

    [22] W. Liu, J. Wei, X. Sun, H. Yu. A study on graphene—metal contact. Crystals, 3, 257(2013).

    [23] M. G. Stanford, K. Yang, Y. Chyan, C. Kittrell, J. M. Tour. Laser induced graphene for flexible and embeddable gas sensors. ACS Nano, 13, 3474(2019).

    [24] Z. Peng, J. Lin, R. Ye, E. Samuel, J. M. Tour. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces, 7, 3414(2015).

    [25] M. G. Stanford, J. T. Li, Y. Chyan, Z. Wang, J. M. Tour. Laser-induced graphene triboelectric nanogenerators. ACS Nano, 13, 7166(2019).

    [26] Z. Wang, G. Wang, G. Liu, B. Hu, Y. Zhang. Patterned laser-induced graphene for terahertz wave modulation. J. Opt. Soc. Am. B, 37, 546(2020).

    [27] R. Zhang, G. Zong, S. Wu, R. Song, X. Zhang, S. Ge, W. Hu, L. Wang, Y. Lu. Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene. J. Opt. Soc. Am. B, 39, 1229(2022).

    [28] Y. Chyan, R. Ye, Y. Li, S. P. Singh, C. J. Arnusch, J. M. Tour. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano, 12, 2176(2018).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Jingxuan Lan, Rongxuan Zhang, Hao Bai, Caidie Zhang, Xu Zhang, Wei Hu, Lei Wang, Yanqing Lu, "Tunable broadband terahertz absorber based on laser-induced graphene," Chin. Opt. Lett. 20, 073701 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared and Terahertz Photonics

    Received: Mar. 3, 2022

    Accepted: Apr. 24, 2022

    Posted: Apr. 25, 2022

    Published Online: May. 26, 2022

    The Author Email: Lei Wang (wangl@njupt.edu.cn)

    DOI:10.3788/COL202220.073701

    Topics