Optical Technique, Volume. 47, Issue 2, 187(2021)
Abnormal crowd behavior detection using improved C3D-RF under Video Surveillance
[1] [1] Fan Y, Wen G, Li D, et al. Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder[J]. Computer Vision and Image Understanding,2018,195(01):1—12.
[2] [2] Wang F, Huang H, Liu J. Variational-based mixed noise removal with CNN deep learning regularization[J]. IEEE Transactions on Image Processing,2019,29:1246—1258.
[5] [5] Xuan Q, Li F, Liu Y, et al. MV-C3D: A spatial correlated multi-view 3D convolutional neural networks[J]. IEEE Access,2019,7(01):2169—3536.
[8] [8] Qian H M, Mao Y B, Wang Z Q. SVM-based abnormal activity detection for home care[C]∥2008 7th World Congress on Intelligent Control and Automation.China,Chongqing:IEEE,2008:3766—3771.
[11] [11] Guo S, Bai Q, Gao S, et al. An analysis method of crowd abnormal behavior for video service robot[J]. IEEE Access,2010,07(01):169577—169585.
[15] [15] Direkoglu C. Abnormal crowd behavior detection using motion information images and convolutional neural networks[J]. IEEE Access,2020,08(01):80408—80416.
[18] [18] Hu X, Dai J, Huang Y P, et al. A weakly supervised framework for abnormal behavior detection and localization in crowded scenes[J]. Neurocomputing,2020,383(01):270—281.
[23] [23] Pinter M. Toward more realistic pathfinding[EB/OL]. (2001-03)/[2001-09].http:∥www.gamasutra.com/view/feature/3096/toward_more_realistic_pathfinding.php.
[24] [24] Ferryman J, Ellis A L. Performance evaluation of crowd image analysis using the PETS2009 dataset[J]. Pattern Recognition Letters,2014,44(15):3—15.
Get Citation
Copy Citation Text
ZHANG Weiwei, CHEN Suiyang, CHEN Rui. Abnormal crowd behavior detection using improved C3D-RF under Video Surveillance[J]. Optical Technique, 2021, 47(2): 187
Category:
Received: Aug. 31, 2020
Accepted: --
Published Online: Sep. 9, 2021
The Author Email: Weiwei ZHANG (15129936628@163.com)
CSTR:32186.14.