Opto-Electronic Engineering, Volume. 50, Issue 8, 230141(2023)

Research progress and applications of dynamically tunable metasurfaces

Jiawei Wang1,2, Ke Li1,2, Ming Cheng1,2, Lei Chen1,2, Delai Kong1,2, and Yanjun Liu1,2、*
Author Affiliations
  • 1Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
  • 2Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
  • show less
    References(142)

    [1] Yu N F, Aieta F, Genevet P et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 12, 6328-6333(2012).

    [2] Lee G Y, Yoon G, Lee S Y et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 10, 4237-4245(2018).

    [3] Zhang K, Yuan Y Y, Zhang D W et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Opt Express, 26, 1351-1360(2018).

    [4] Maguid E, Yulevich I, Yannai M et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light Sci Appl, 6, e17027(2017).

    [5] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nat Commun, 7, 10367(2016).

    [6] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [7] Chu H C, Li Q, Liu B B et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials[J]. Light Sci Appl, 7, 50(2018).

    [8] Liu Y J, Hao Q Z, Smalley J S T et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals[J]. Appl Phys Lett, 97, 091101(2010).

    [9] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 27, 1141-1143(2022).

    [10] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 11, 426-431(2012).

    [11] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 12, 6223-6229(2012).

    [12] Xie X, Pu M B, Liu K P et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror[J]. Adv Mater Technol, 4, 1900334(2019).

    [13] Hu M, Chen J Y, Li Z Y et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications[J]. Chem Soc Rev, 35, 1084-1094(2006).

    [14] Liu Y J, Si G Y, Leong E S P et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays[J]. Adv Mater, 24, OP131-OP135(2012).

    [15] Chen Y G, Kao T S, Ng B et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Opt Express, 21, 13691-13698(2013).

    [16] Iyer P P, Butakov N A, Schuller J A. Reconfigurable semiconductor phased-array metasurfaces[J]. ACS Photonics, 2, 1077-1084(2015).

    [17] Komar A, Fang Z, Bohn J et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Appl Phys Lett, 110, 071109(2017).

    [18] Wu P C, Pala R A, Shirmanesh G K et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nat Commun, 10, 3654(2019).

    [19] Zou C J, Komar A, Fasold S et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces[J]. ACS Photonics, 6, 1533-1540(2019).

    [20] Yan C, Yang K Y, Martin O J F. Fano-resonance-assisted metasurface for color routing[J]. Light Sci Appl, 6, e17017(2017).

    [21] Wang C T, Hou H H, Chang P C et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Opt Express, 24, 22892-22898(2016).

    [22] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 10, 308-312(2015).

    [23] Berini P. Optical beam steering using tunable metasurfaces[J]. ACS Photonics, 9, 2204-2218(2022).

    [24] Chen M K, Wu Y F, Feng L et al. Principles, functions, and applications of optical meta-lens[J]. Adv Opt Mater, 9, 2001414(2021).

    [25] Decker M, Kremers C, Minovich A et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Opt Express, 21, 8879-8885(2013).

    [26] Buchnev O, Podoliak N, Kaczmarek M et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Adv Opt Mater, 3, 674-679(2015).

    [27] Wang D C, Zhang L C, Gu Y H et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Sci Rep, 5, 15020(2015).

    [28] Colburn S, Zhan A, Majumdar A. Metasurface optics for full-color computational imaging[J]. Sci Adv, 4, eaar2114(2018).

    [29] Kim J, Jeon D, Seong J et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible[J]. ACS Nano, 16, 3546-3553(2022).

    [30] Nemati A, Wang Q, Hong M H et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electron Adv, 1, 180009(2018).

    [31] Du K, Barkaoui H, Zhang X D et al. Optical metasurfaces towards multifunctionality and tunability[J]. Nanophotonics, 11, 1761-1781(2022).

    [32] Chen W T, Yang K Y, Wang C M et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Lett, 14, 225-230(2014).

    [33] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 6, 8241(2015).

    [34] Li S Q, Wang Z, Dong S H et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces[J]. Nanophotonics, 9, 3473-3481(2020).

    [35] Chen Y Z, Zheng X Y, Zhang X Y et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way[J]. Nano Lett, 23, 3326-3333(2023).

    [36] Wang Z, Yao Y, Pan W K et al. Bifunctional manipulation of Terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Adv Sci, 10, 2205499(2023).

    [37] Ali A, Mitra A, Aïssa B. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices[J]. Nanomaterials, 12, 1027(2022).

    [38] Ou X N, Zeng T B, Zhang Y et al. Tunable polarization-multiplexed achromatic dielectric metalens[J]. Nano Lett, 22, 10049-10056(2022).

    [39] Wen Y F, Zhang Q, He Q et al. Shortening focal length of 100-mm aperture flat lens based on improved Sagnac interferometer and bifacial liquid crystal[J]. Adv Opt Mater, 11, 2300127(2023).

    [40] Sabri R, Forouzmand A, Mosallaei H. Genetically optimized dual-wavelength all-dielectric metasurface based on double-layer epsilon-near-zero indium-tin-oxide films[J]. J Appl Phys, 128, 223101(2020).

    [41] Cai Z Q, Liu Y M. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J]. Adv Opt Mater, 10, 2102135(2022).

    [42] Tian J Y, Adamo G, Liu H L et al. Phase-change perovskite microlaser with tunable polarization vortex[J]. Adv Mater, 35, 2207430(2023).

    [43] Abdelraouf O A M, Wang Z Y, Liu H L et al. Recent advances in tunable metasurfaces: materials, design, and applications[J]. ACS Nano, 16, 13339-13369(2022).

    [44] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Rep Prog Phys, 79, 076401(2016).

    [45] Sun S L, He Q, Hao J M et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 11, 380-478(2019).

    [46] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. J Phys Chem B, 107, 668-677(2003).

    [47] Murray W A, Barnes W L. Plasmonic materials[J]. Adv Mater, 19, 3771-3782(2007).

    [48] Franklin D, Chen Y, Vazquez-Guardado A et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nat Commun, 6, 7337(2015).

    [49] Li K, Wang J W, Cai W F et al. Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays[J]. Opt Express, 30, 31913-31924(2022).

    [50] Zhang J, Wei X Z, Rukhlenko I D et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 7, 265-271(2020).

    [51] Wang H T, Hao C L, Lin H et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 4, 200031(2021).

    [52] Ju L, Geng B S, Horng J et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nat Nanotechnol, 6, 630-634(2011).

    [53] Fang Z Y, Wang Y M, Schlather A E et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Lett, 14, 299-304(2014).

    [54] Mou N L, Sun S L, Dong H X et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces[J]. Opt Express, 26, 11728-11736(2018).

    [55] Nemati A, Wang Q, Ang N S S et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances[J]. Opto-Electron Adv, 4, 200088(2021).

    [56] Zeng C, Lu H, Mao D et al. Graphene-empowered dynamic metasurfaces and metadevices[J]. Opto-Electron Adv, 5, 200098(2022).

    [57] Xiong K L, Emilsson G, Maziz A et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color[J]. Adv Mater, 28, 9956-9960(2016).

    [58] Arbabi E, Arbabi A, Kamali S M et al. MEMS-tunable dielectric metasurface lens[J]. Nat Commun, 9, 812(2018).

    [59] Meng C, Thrane P C V, Ding F et al. Dynamic piezoelectric mems-based optical metasurfaces[J]. Sci Adv, 7, eabg5639(2021).

    [60] Camurlu P. Polypyrrole derivatives for electrochromic applications[J]. RSC Adv, 4, 55832-55845(2014).

    [61] Abdollahramezani S, Hemmatyar O, Taghinejad M et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency[J]. Nat Commun, 13, 1696(2022).

    [62] Rahmani M, Xu L, Miroshnichenko A E et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Adv Funct Mater, 27, 1700580(2017).

    [63] Sun J, Timurdogan E, Yaacobi A, Hosseini E S et al. Large-scale nanophotonic phased array[J]. Nature, 493, 195-199(2013).

    [64] Ding L, Luo X S, Cheng L et al. Electrically and thermally tunable smooth silicon metasurfaces for broadband terahertz antireflection[J]. Adv Opt Mater, 6, 1800928(2018).

    [65] Kamali K Z, Xu L, Gagrani N et al. Electrically programmable solid-state metasurfaces via flash localised heating[J]. Light Sci Appl, 12, 40(2023).

    [66] Iyer P P, Pendharkar M, Palmstrøm C J et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates[J]. Nat Commun, 8, 472(2017).

    [67] Driscoll T, Palit S, Qazilbash M M et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl Phys Lett, 93, 024101(2008).

    [68] Driscoll T, Kim H T, Chae B G et al. Memory metamaterials[J]. Science, 325, 1518-1521(2009).

    [69] Liu L, Kang L, Mayer T S, Werner D H. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nat Commun, 7, 13236(2016).

    [70] Tittl A, Michel A K U, Schäferling M et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Adv Mater, 27, 4597-4603(2015).

    [71] Mou N L, Liu X L, Wei T et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 12, 5374-5379(2020).

    [72] Yin X H, Steinle T, Huang L L et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light Sci Appl, 6, e17016(2017).

    [73] Zhang F, Xie X, Pu M B et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Adv Mater, 32, 1908194(2020).

    [74] Sautter J, Staude I, Decker M et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 9, 4308-4315(2015).

    [75] Komar A, Paniagua-Domínguez R, Miroshnichenko A et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 5, 1742-1748(2018).

    [76] Kim I, Ansari M A, Mehmood M Q et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators[J]. Adv Mater, 32, 2004664(2020).

    [77] Padilla W J, Taylor A J, Highstrete C et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys Rev Lett, 96, 107401(2006).

    [78] Gu J Q, Singh R, Liu X J et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 3, 1151(2012).

    [79] Shcherbakov M R, Liu S, Zubyuk V V et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nat Commun, 8, 17(2017).

    [80] Cong L Q, Srivastava Y K, Zhang H F et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light Sci Appl, 7, 28(2018).

    [81] Guo P J, Schaller R D, Ketterson J B et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude[J]. Nat Photonics, 10, 267-273(2016).

    [82] Yang Y M, Kelley K, Sachet E et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nat Photonics, 11, 390-395(2017).

    [83] Liu M K, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).

    [84] Wang Q, Rogers E T F, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 10, 60-65(2016).

    [85] Li P N, Yang X S, Maß T W W et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material[J]. Nat Mater, 15, 870-875(2016).

    [86] Sharma M, Ellenbogen T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser Photonics Rev, 14, 2000253(2020).

    [87] Ren M X, Wu W, Cai W et al. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light Sci Appl, 6, e16254(2017).

    [88] Liu J X, Zeng H, Cheng M et al. Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning[J]. Mater Horiz, 9, 942-951(2022).

    [89] Cong L Q, Pitchappa P, Wu Y et al. Active multifunctional microelectromechanical system metadevices: Applications in polarization control, wavefront deflection, and holograms[J]. Adv Opt Mater, 5, 1600716(2017).

    [90] Shimura T, Kinoshita T, Koto Y et al. Birefringent reconfigurable metasurface at visible wavelengths by MEMS nanograting[J]. Appl Phys Lett, 113, 171905(2018).

    [91] Roy T, Zhang S Y, Jung I W et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 3, 021302(2018).

    [92] Oshita M, Takahashi H, Ajiki Y et al. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever[J]. ACS Photonics, 7, 673-679(2020).

    [93] He S W, Yang H M, Jiang Y H et al. Recent advances in MEMS metasurfaces and their applications on tunable lens[J]. Micromachines, 10, 505(2019).

    [94] Kamali S M, Arbabi E, Arbabi A et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser Photonics Rev, 10, 1002-1008(2016).

    [95] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Lett, 17, 3641-3645(2017).

    [96] Yuan S M, Chen A L, Wang Y S. Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation[J]. J Sound Vib, 470, 115168(2020).

    [97] Cao L Y, Yang Z C, Xu Y L et al. Deflecting flexural wave with high transmission by using pillared elastic metasurface[J]. Smart Mater Struct, 27, 075051(2018).

    [98] Cao L Y, Yang Z C, Xu Y L et al. Disordered elastic metasurfaces[J]. Phys Rev Appl, 13, 014054(2020).

    [99] Kocer H, Durna Y, Kurt H et al. Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate[J]. Opt Lett, 45, 3521-3524(2020).

    [100] Lee S W, Oh J H. Single-layer elastic metasurface with double negativity for anomalous refraction[J]. J Phys D Appl Phys, 53, 265301(2020).

    [101] Song S C, Ma X L, Pu M B et al. Actively tunable structural color rendering with tensile substrate[J]. Adv Opt Mater, 5, 1600829(2017).

    [102] Tao H, Strikwerda A C, Fan K et al. Reconfigurable terahertz metamaterials[J]. Phys Rev Lett, 103, 147401(2009).

    [103] Han Z L, Kohno K, Fujita H et al. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator[J]. Opt Express, 22, 21326-21339(2014).

    [104] Zhao X G, Schalch J, Zhang J D et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 5, 303-310(2018).

    [105] Fu Y H, Liu A Q, Zhu W M et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Adv Funct Mater, 21, 3589-3594(2011).

    [106] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Lett, 16, 2818-2823(2016).

    [107] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nat Commun, 8, 14606(2017).

    [108] Yu P, Li J X, Li X et al. Generation of switchable singular beams with dynamic metasurfaces[J]. ACS Nano, 13, 7100-7106(2019).

    [109] Li J X, Chen Y Q, Hu Y Q et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 14, 7892-7898(2020).

    [110] Li J X, Kamin S, Zheng G X et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Sci Adv, 4, eaar6768(2018).

    [111] Duan X Y, Kamin S, Sterl F et al. Hydrogen-regulated chiral nanoplasmonics[J]. Nano Lett, 16, 1462-1466(2016).

    [112] Cui Y, Hegde R S, Phang I Y et al. Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications[J]. Nanoscale, 6, 282-288(2014).

    [113] Duan X Y, Liu N. Scanning plasmonic color display[J]. ACS Nano, 12, 8817-8823(2018).

    [114] Nagasaki Y, Suzuki M, Hotta I et al. Control of Si-based all-dielectric printing color through oxidation[J]. ACS Photonics, 5, 1460-1466(2018).

    [115] Kim I, Kim W S, Kim K et al. Holographic metasurface gas sensors for instantaneous visual alarms[J]. Sci Adv, 7, eabe9943(2021).

    [116] Dai C J, Wang Z J, Shi Y Y et al. Scalable hydrogel-based nanocavities for switchable meta-holography with dynamic color printing[J]. Nano Lett, 22, 9990-9996(2022).

    [117] Zhu W M, Song Q H, Yan L B et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Adv Mater, 27, 4739-4743(2015).

    [118] Afridi A, Gieseler J, Meyer N et al. Ultrathin tunable optomechanical metalens[J]. Nano Lett, 23, 2496-2501(2023).

    [119] Shalaginov M Y, An S D, Zhang Y F et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nat Commun, 12, 1225(2021).

    [120] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 4, 2808(2013).

    [121] Xu Z T, Huang L L, Li X W et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 8, 1901169(2020).

    [122] Overvig A C, Shrestha S, Malek S C et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light Sci Appl, 8, 92(2019).

    [123] Gao Y S, Fan Y B, Wang Y J et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Lett, 18, 8054-8061(2018).

    [124] Huang Y W, Chen W T, Tsai W Y et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Lett, 15, 3122-3127(2015).

    [125] Wang E L, Niu J B, Liang Y H et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Adv Opt Mater, 8, 1901674(2020).

    [126] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nat Nanotechnol, 15, 948-955(2020).

    [127] Kim G, Kim S, Kim H et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays[J]. Nanoscale, 14, 4380-4410(2022).

    [128] Li L L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding–metasurface holograms[J]. Nat Commun, 8, 197(2017).

    [129] Li J X, Yu P, Zhang S et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nat Commun, 11, 3574(2020).

    [130] Chen Y Q, Duan X Y, Matuschek M et al. Dynamic color displays using stepwise cavity resonators[J]. Nano Lett, 17, 5555-5560(2017).

    [131] Sterl F, Strohfeldt N, Walter R et al. Magnesium as novel material for active plasmonics in the visible wavelength range[J]. Nano Lett, 15, 7949-7955(2015).

    [132] Ko B, Badloe T, Rho J. Vanadium dioxide for dynamically tunable photonics[J]. ChemNanoMat, 7, 713-727(2021).

    [133] Kim S J, Lee D, Chae J Y et al. Reconfigurable, vivid reflective colors based on solution-processed Fabry-Perot absorber using thermochromic vanadium dioxide[J]. Appl Surf Sci, 565, 150610(2021).

    [134] Badloe T, Kim I, Rho J. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide[J]. Sci Rep, 10, 4522(2020).

    [135] Liu X B, Wang Q, Zhang X Q et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Adv Opt Mater, 7, 1900175(2019).

    [136] Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors[J]. Rep Prog Phys, 71, 076401(2008).

    [137] Ghiradella H. Light and color on the wing: structural colors in butterflies and moths[J]. Appl Opt, 30, 3492-3500(1991).

    [138] Zhang K, Tang Y W, Meng J S et al. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements[J]. Opt Express, 22, 27437-27450(2014).

    [139] Li K, Wang J W, Cai W F et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals[J]. Nano Lett, 21, 7183-7190(2021).

    [140] Yang W H, Qu G Y, Lai F X et al. Dynamic bifunctional metasurfaces for holography and color display[J]. Adv Mater, 33, 2101258(2021).

    [141] Huang Y W, Lee H W H, Sokhoyan R et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Lett, 16, 5319-5325(2016).

    [142] Park J, Jeong B G, Kim S I et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nat Nanotechnol, 16, 69-76(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jiawei Wang, Ke Li, Ming Cheng, Lei Chen, Delai Kong, Yanjun Liu. Research progress and applications of dynamically tunable metasurfaces[J]. Opto-Electronic Engineering, 2023, 50(8): 230141

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 20, 2023

    Accepted: Sep. 5, 2023

    Published Online: Nov. 15, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230141

    Topics