Chinese Journal of Lasers, Volume. 49, Issue 4, 0409002(2022)

An Image Encoding Method for Fusion Display of Virtual and Real Scenes in Holographic Stereogram

Yunpeng Liu, Xi Wang, Xinlei Liu, Tao Jing, Xiaoyu Jiang, and Xingpeng Yan*
Author Affiliations
  • Department of Information Communication, Army Academy of Armored Forces, Beijing 100072, China
  • show less
    References(42)

    [1] Fan F, Yan X P, Li P et al. General hogel-based effective perspective image segmentation and mosaicking method for holographic stereogram printing[J]. Chinese Journal of Lasers, 46, 1209001(2019).

    [2] Gabor D. A new microscopic principle[J]. Nature, 161, 777(1948).

    [3] Qian N. Binocular disparity and the perception of depth[J]. Neuron, 18, 359-368(1997).

    [4] Liu P, Sun X D, Zhao Y et al. Ultrafast volume holographic recording with exposure reciprocity matching for TI/PMMAs application[J]. Optics Express, 27, 19583-19595(2019).

    [6] Bjelkhagen H I, Brotherton-Ratcliffe D. Ultrarealistic imaging: the future of display holography[J]. Optical Engineering, 53, 112310(2014).

    [7] Pole R V. 3-D imagery and holograms of objects illuminated in white light[J]. Applied Physics Letters, 10, 20-22(1967).

    [8] Debitetto D J. Holographic panoramic stereograms synthesized from white light recordings[J]. Applied Optics, 8, 1740-1741(1969).

    [9] King M C, Noll A M, Berry D H. A new approach to computer-generated holography[J]. Applied Optics, 9, 471-475(1970).

    [10] Halle M W, Benton S A, Klug M A et al. Ultragram: a generalized holographic stereogram[J]. Proceedings of SPIE, 1461, 142-155(1991).

    [11] Yamaguchi M, Ohyama N, Honda T. Holographic three-dimensional printer: new method[J]. Applied Optics, 31, 217-222(1992).

    [12] Myridis N E. Ultra-realistic imaging: advanced techniques in analogue and digital colour holography, by Hans Bjelkhagen and David Brotherton-Ratcliffe[J]. Contemporary Physics, 55, 247-248(2014).

    [13] Su J, Yuan Q, Huang Y et al. Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images' segmentation and mosaicking[J]. Optics Express, 25, 23523-23544(2017).

    [14] Fan F, Jiang X Y, Yan X P et al. Holographic element-based effective perspective image segmentation and mosaicking holographic stereogram printing[J]. Applied Sciences, 9, 920(2019).

    [15] Su J, Yan X, Jiang X et al. Characteristic and optimization of the effective perspective images' segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach[J]. Scientific Reports, 8, 4488(2018).

    [16] Yan X, Zhang T, Wang C et al. Analysis on the reconstruction error of EPISM based full-parallax holographic stereogram and its improvement with multiple reference plane[J]. Optics Express, 27, 32508-32522(2019).

    [17] Chen Z D, Sang X Z, Lin Q J et al. Acceleration for computer-generated hologram in head-mounted display with effective diffraction area recording method for eyes[J]. Chinese Optics Letters, 14, 080901(2016).

    [18] Wang Z, Zhang X, Lv G et al. Hybrid holographic Maxwellian near-eye display based on spherical wave and plane wave reconstruction for augmented reality display[J]. Optics Express, 29, 4927-4935(2021).

    [19] Chang C L, Bang K, Wetzstein G et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective[J]. Optica, 7, 1563-1578(2020).

    [20] He Z H, Sui X M, Jin G F et al. Progress in virtual reality and augmented reality based on holographic display[J]. Applied Optics, 58, A74-A81(2018).

    [21] Yang X, Zhang H B, Wang Q H. A fast computer-generated holographic method for VR and AR near-eye 3D display[J]. Applied Sciences, 9, 4164(2019).

    [22] Yang X, Lin S F, Wang D et al. Holographic AR display based on free-form lens combiner and LED illumination[J]. Proceedings of SPIE, 1120, 210-215(2019).

    [23] Li G, Lee D, Jeong Y et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element[J]. Optics Letters, 41, 2486-2489(2016).

    [24] Zhang T, Yan X P, Wang C Q et al. EPISM holographic stereogram with multi-reference planes[J]. Chinese Journal of Lasers, 47, 0909001(2020).

    [25] Roy A, Todorovic S. Monocular depth estimation using neural regression forest[C], 5506-5514(2016).

    [27] Yan H, Zhang S L, Zhang Y et al. Monocular depth estimation with guidance of surface normal map[J]. Neurocomputing, 280, 86-100(2018).

    [28] Isard M, Blake A. CONDENSATION: conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 29, 5-28(1998).

    [29] Sekine Y. Effects of country-of-origin information on product evaluation: an information processing perspective[J]. Neuroscience & Biobehavioral Reviews, 72, 232(2017).

    [30] Chang J R, Chen Y S. Pyramid stereo matching network[C], 5410-5418(2018).

    [31] Liu F Y, Shen C H, Lin G S et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2024-2039(2016).

    [32] Schwarz M, Schulz H, Behnke S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features[C], 1329-1335(2015).

    [33] Zhan H Y, Garg R, Weerasekera C S et al. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction[C], 340-349(2018).

    [34] Khoshelham K. Accuracy analysis of Kinect depth data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, 133-138(2012).

    [35] Smisek J, Jancosek M, Pajdla T[M]. 3D with Kinect, 1154-1160(2011).

    [36] Hyyppa J, Kelle O, Lehikoinen M et al. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners[J]. IEEE Transactions on Geoscience and Remote Sensing, 39, 969-975(2001).

    [37] Dai J F, He K M, Sun J. Instance-aware semantic segmentation via multi-task network cascades[C], 3150-3158(2016).

    [38] Gupta S, Girshick R, Arbeláez P et al. Learning rich features from RGB-D images for object detection and segmentation[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8695, 345-360(2014).

    [39] He K M, Gkioxari G, Dollar P et al. Mask R-CNN[C], 2980-2988(2017).

    [40] Xu Y Y, Li D W, Xie Q et al. Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN[J]. Measurement, 178, 109316(2021).

    [41] Girshick R. Fast R-CNN[C], 1440-1448(2015).

    [42] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [43] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8693, 740-755(2014).

    Tools

    Get Citation

    Copy Citation Text

    Yunpeng Liu, Xi Wang, Xinlei Liu, Tao Jing, Xiaoyu Jiang, Xingpeng Yan. An Image Encoding Method for Fusion Display of Virtual and Real Scenes in Holographic Stereogram[J]. Chinese Journal of Lasers, 2022, 49(4): 0409002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: holography and information processing

    Received: Jun. 9, 2021

    Accepted: Jul. 5, 2021

    Published Online: Jan. 18, 2022

    The Author Email: Yan Xingpeng (yanxp02@gmail.com)

    DOI:10.3788/CJL202249.0409002

    Topics