Journal of Bioresources and Bioproducts, Volume. 10, Issue 2, 199(2025)

Self-densified super-strong wood

Dafang Huang, Jie Li, Suiyi Li, Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, and Yanfeng Chen
References(49)

[1] [1] Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285.

[2] [2] Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., et al., 2020a. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642-666.

[3] [3] Chen, F., Ritter, M., Xu, Y.F., Tu, K.K., Koch, S.M., Yan, W.Q., et al., 2024. Lightweight, strong, and transparent wood films produced by capillary driven self-densification. Small 20, e2311966.

[4] [4] Chen, G.G., Chen, C.J., Pei, Y., He, S.M., Liu, Y., Jiang, B., et al., 2020b. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 383, 123109.

[5] [5] Chen, K.X., Li, L., 2019. Ordered structures with functional units as a paradigm of material design. Adv. Mater. 31, e1901115.

[6] [6] Chen, S.Y., Obataya, E., Matsuo-Ueda, M., 2018. Shape fixation of compressed wood by steaming: a mechanism of shape fixation by rearrangement of crystalline cellulose. Wood Sci. Technol. 52, 1229-1241.

[7] [7] Chen, Y., Awasthi, A.K., Wei, F., Tan, Q.Y., Li, J.H., 2021. Single-use plastics: production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772.

[8] [8] Ding, Y., Pang, Z.Q., Lan, K., Yao, Y., Panzarasa, G., Xu, L., et al., 2023. Emerging engineered wood for building applications. Chem. Rev. 123, 1843-1888.

[9] [9] Dong, X.F., Gan, W.T., Shang, Y., Tang, J.F., Wang, Y.X., Cao, Z.F., et al., 2022. Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5, 628-635.

[10] [10] Dursun, T., Soutis, C., 2014. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862-871.

[11] [11] Erickson, E.C., 1965. Mechanical properties of laminated modified wood. USA: U.S. Dept. Of Agriculture, Wisconsin No. 1639.

[12] [12] Frey, M., Biffi, G., Adobes-Vidal, M., Zirkelbach, M., Wang, Y.R., Tu, K.K., et al., 2019. Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6, 1802190.

[13] [13] Frey, M., Widner, D., Segmehl, J.S., Casdorff, K., Keplinger, T., Burgert, I., 2018. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10, 5030-5037.

[14] [14] Hou, Y.Z., Guan, Q.F., Xia, J., Ling, Z.C., He, Z.Z., Han, Z.M., et al., 2021. Strengthening and toughening hierarchical nanocelluloseviahumidity-mediated interface. ACS Nano 15, 1310-1320.

[15] [15] Huang, W., Restrepo, D., Jung, J.Y., Su, F.Y., Liu, Z.Q., Ritchie, R.O., et al., 2019. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, e1901561.

[16] [16] Hwang, S.W., Isoda, H., Nakagawa, T., Sugiyama, J., 2021. Flexural anisotropy of rift-sawn softwood boards induced by the end-grain orientation. J. Wood Sci. 67, 1-8.

[17] [17] Jakob, M., Mahendran, A.R., Gindl-Altmutter, W., Bliem, P., Konnerth, J., Mller, U., et al., 2022. The strength and stiffness of oriented wood and cellulose-fibre materials: a review. Prog. Mater. Sci. 125, 100916.

[18] [18] Jin, K., Qin, Z., Buehler, M.J., 2015. Molecular deformation mechanisms of the wood cell wall material. J. Mech. Behav. Biomed. Mater. 42, 198-206.

[19] [19] Khakalo, A., Tanaka, A., Korpela, A., Hauru, L.K.J., Orelma, H., 2019. All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustain. Chem. Eng. 7, 3195-3202.

[20] [20] Khakalo, A., Tanaka, A., Korpela, A., Orelma, H., 2020. Delignification and ionic liquid treatment of wood toward multifunctional high-performance structural materials. ACS Appl. Mater. Interfaces 12, 23532-23542.

[21] [21] Kim, S.H., Kim, H., Kim, N.J., 2015. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77-79.

[22] [22] Kulasinski, K., Derome, D., Carmeliet, J., 2017. Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. J. Mech. Phys. Solids 103, 221-235.

[23] [23] Kumar, A., Jyske, T., Petri, M., 2021. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 2000251.

[24] [24] Kutnar, A., Kamke, F.A., Sernek, M., 2008. The mechanical properties of densified VTC wood relevant for structural composites. Holz Als Roh Und Werkstoff 66, 439-446.

[25] [25] Kyriazidou, E., Pesendorfer, M., 1999. Viennese chairs: a case study for modern industrialization. J. Eco. History 59, 143-166.

[26] [26] Li, K., Wang, S.N., Chen, H., Yang, X., Berglund, L.A., Zhou, Q., 2020a. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, e2003653.

[27] [27] Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., et al., 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47-56.

[28] [28] Li, Z.H., Chen, C.J., Mi, R.Y., Gan, W.T., Dai, J.Q., Jiao, M.L., et al., 2020b. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32, e1906308.

[29] [29] Ling, S.J., Kaplan, D.L., Buehler, M.J., 2018. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016.

[30] [30] Liu, Y., Li, B., Mao, W.B., Hu, W., Chen, G., Liu, Y.Y., et al., 2019. Strong cellulose-based materials by coupling sodium hydroxide-anthraquinone (NaOH-AQ) pulping with hot pressing from wood. ACS Omega 4, 7861-7865.

[31] [31] Luan, Y., Fang, C.H., Ma, Y.F., Fei, B.H., 2022. Wood mechanical densification: a review on processing. Mater. Manuf. Process. 37, 359-371.

[32] [32] Maa, M.C., Saleh, S., Militz, H., Volkert, C.A., 2020. The structural origins of wood cell wall toughness. Adv. Mater. 32, e1907693.

[33] [33] Marbun, S.D., Dwianto, W., Meliala, S.B.P.S., Widyorini, R., Augustina, S., Hiziroglu, S., 2023. Dimensional stability mechanisms of binderless boards by heat or steam treatment: a review. Cellulose 30, 8571-8593.

[34] [34] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941-3994.

[35] [35] Naskar, A.K., Keum, J.K., Boeman, R.G., 2016. Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol. 11, 1026-1030.

[36] [36] Rautkari, L., Properzi, M., Pichelin, F., Hughes, M., 2010. Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44, 679-691.

[37] [37] Ritchie, R.O., 2011. The conflicts between strength and toughness. Nat. Mater. 10, 817-822.

[38] [38] Ruan, G.M., Filz, G.H., Fink, G., 2022. Shear capacity of timber-to-timber connections using wooden nails. Wood Mater. Sci. Eng. 17, 20-29.

[39] [39] Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Moorthy, I.G., 2014. Investigation of physico-chemical properties of alkali-treatedProsopis juliflorafibers. Int. J. Polym. Anal. Charact. 19, 309-317.

[40] [40] Schubert, M., Panzarasa, G., Burgert, I., 2023. Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123, 1889-1924.

[41] [41] Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., et al., 2023. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123, 1925-2015.

[42] [42] Song, J.W., Chen, C.J., Zhu, S.Z., Zhu, M.W., Dai, J.Q., Ray, U., et al., 2018. Processing bulk natural wood into a high-performance structural material. Nature 554, 224-228.

[43] [43] Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V., Narayanasamy, R., 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres: an exploratory investigation. Mater. Des. 32, 453-461.

[44] [44] Tarkow, H.R.S., 1968. Surface densification of wood. For. Prod. J. 18, 104-110.

[45] [45] Wan, Y.F., An, F., Zhou, P.C., Li, Y.H., Liu, Y.D., Lu, C.X., et al., 2017. Regenerated cellulose Ⅰ from LiCl·DMAc solution. Chem. Commun. 53, 3595-3597.

[46] [46] Yang, X.P., Biswas, S.K., Han, J.Q., Tanpichai, S., Li, M.C., Chen, C.C., et al., 2021. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33, e2002264.

[47] [47] Yano, H., Hirose, A., Inaba, S., 1997. High-strength wood-based materials. J. Mater. Sci. Lett. 16, 1906-1909.

[48] [48] Zhang, C., Chen, M.Y., Keten, S., Coasne, B., Derome, D., Carmeliet, J., 2021. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Sci. Adv. 7, eabi8919.

[49] [49] Zheng, K.L., Politis, D.J., Wang, L.L., Lin, J.G., 2018. A review on forming techniques for manufacturing lightweight complex: shaped aluminium panel components. Int. J. Light. Mater. Manuf. 1, 55-80.

Tools

Get Citation

Copy Citation Text

Huang Dafang, Li Jie, Li Suiyi, Hu Jianbing, Cao Zhiru, Guo Yang, Ding Yu, Zhu Mingwei, Chen Yanfeng. Self-densified super-strong wood[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 199

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: --

Accepted: Aug. 26, 2025

Published Online: Aug. 26, 2025

The Author Email:

DOI:10.1016/j.jobab.2025.03.001

Topics