Chinese Journal of Lasers, Volume. 49, Issue 23, 2310001(2022)

Tree Branch and Leaf Separation Using Terrestrial Laser Point Clouds

Huaqing Lu*, Jicang Wu, and Zijian Zhang
Author Affiliations
  • College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
  • show less
    References(21)

    [1] Li C G, Dai H B. Forest management inventory in China: history, current status and trend[J]. World Forestry Research, 34, 72-80(2021).

    [2] Wang B[D]. Studies on automatic 3D reconstruction techniques of trees based on terrestrial lidar point clouds, 22-28(2015).

    [3] Sun Y, Lin X Y, Xiong J X et al. Separation of single wood branches and leaves based on corrected TLS intensity data[J]. Chinese Journal of Lasers, 48, 0104001(2021).

    [4] Xiao Y, Hu S X, Xiao S et al. A fast statistical method of tree information from 3D laser point clouds[J]. Chinese Journal of Lasers, 45, 0510007(2018).

    [5] Liang Z K, Sun D Z, Li Y R et al. Normal propagation of point clouds constrained by hierarchical riemannian graphs with tree structures[J]. Acta Optica Sinica, 39, 1211001(2019).

    [6] Wang Y, Song K L, Yao L L. Measurement of biomass and carbon storage of trees based on 3D laser scanning[J]. Beijing Surveying and Mapping, 33, 1200-1205(2019).

    [7] Wang W Q, Li Z C, Fu Y J et al. Multi-factor segmentation of point cloud based on improved multi-rule region growing[J]. Acta Optica Sinica, 41, 0528001(2021).

    [8] Momo Takoudjou S, Ploton P, Sonké B et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: a comparison with traditional destructive approach[J]. Methods in Ecology and Evolution, 9, 905-916(2018).

    [9] Li S H, Dai L Y, Wang H S et al. Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model[J]. Remote Sensing, 9, 1202(2017).

    [10] Calders K, Newnham G, Burt A et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning[J]. Methods in Ecology and Evolution, 6, 198-208(2015).

    [11] Zhou W, Ma X D, Zhang L J et al. Three dimensional point cloud splicing of tree canopy based on multi-source camera[J]. Acta Optica Sinica, 34, 1215003(2014).

    [12] Béland M, Baldocchi D D, Widlowski J L et al. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR[J]. Agricultural and Forest Meteorology, 184, 82-97(2014).

    [13] Tao S L, Guo Q H, Su Y J et al. A geometric method for wood-leaf separation using terrestrial and simulated lidar data[J]. Photogrammetric Engineering & Remote Sensing, 81, 767-776(2015).

    [14] Ma L X, Zheng G, Eitel J U H et al. Improved salient feature-based approach for automatically separating photosynthetic and nonphotosynthetic components within terrestrial lidar point cloud data of forest canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 679-696(2016).

    [15] Ferrara R, Virdis S G P, Ventura A et al. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN[J]. Agricultural and Forest Meteorology, 262, 434-444(2018).

    [16] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1, 269-271(1959).

    [17] Adams R, Bischof L. Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 641-647(1994).

    [18] Li R Z, Liu Z W. New segmentation method combining three-dimensional point cloud skeleton points and feature points[J]. Laser & Optoelectronics Progress, 57, 121104(2020).

    [19] Wang D, Momo Takoudjou S, Casella E. LeWoS: a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR[J]. Methods in Ecology and Evolution, 11, 376-389(2020).

    [20] Wang D, Brunner J, Ma Z Y et al. Separating tree photosynthetic and non-photosynthetic components from point cloud data using dynamic segment merging[J]. Forests, 9, 252(2018).

    [21] Vicari M B, Disney M, Wilkes P et al. Leaf and wood classification framework for terrestrial LiDAR point clouds[J]. Methods in Ecology and Evolution, 10, 680-694(2019).

    Tools

    Get Citation

    Copy Citation Text

    Huaqing Lu, Jicang Wu, Zijian Zhang. Tree Branch and Leaf Separation Using Terrestrial Laser Point Clouds[J]. Chinese Journal of Lasers, 2022, 49(23): 2310001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Dec. 28, 2021

    Accepted: Mar. 24, 2022

    Published Online: Oct. 31, 2022

    The Author Email: Lu Huaqing (2033690@tongji.edu.cn)

    DOI:10.3788/CJL202249.2310001

    Topics