Journal of Quantum Optics, Volume. 27, Issue 4, 342(2021)
Exciton States and Interband Transitions of Wurtzite ZnSnN2/InxGa1-xN Cylindrical Quantum Dot
[1] [1] PUNYA A, LAMBRECHT W R L. Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells[J]. Phys Rev B, 2013, 88: 075302. DOI: 10.1103/PhysRevB.88.075302.
[2] [2] FANG D Q, ZHANG Y, ZHANG S L. Band gap engineering of ZnSnN2/ZnO (001) short-period superlattices via built-in electric field[J]. J Appl Phys, 2016, 120: 215703. DOI: 10.1063/1.4971176.
[3] [3] MARTINEZ A D, FIORTTI A N, TOBERER E S, et al. Synthesis, structure, and optoelectronic properties of ii-vi-v2 materials[J]. J Mater Chem A, 2017, 5(23): 11418-11435. DOI: 10.1039/C7TA00406K.
[4] [4] WADIA C, ALIVISATOS A P, KAMMEN D M. Materials availability expands the opportunity for large-scale photovoltaics deployment[J]. Environ Sci Technol, 2009, 43(6): 2072-2077. DOI: 10.1021/es8019534.
[5] [5] QUAYLE P C, HE, K L, SHAN J, et al. Synthesis, lattice structure, and band gap of ZnSnN2[J]. MRS Commun, 2013, 3: 135-138. DOI: 10.1557/mrc.2013.19.
[6] [6] KHAN I S, HEINSELMAN K N, ZAKUTAYEV A. Review of ZnSnN2 semiconductor material[J]. J Phys Energy, 2020, 2(3): 032007. DOI: 10.1088/2515-7655/ab8b69.
[7] [7] HAN L, KASH K, ZHAO H P. Designs of blue and green light-emitting diodes based on type-ii InGaN-ZnGeN2 quantum wells[J]. J Appl Phys, 2016, 120: 103102. DOI: 10.1063/1.4962280.
[8] [8] ROLLES M, HYOT B, MISKA P. New architecture of ZnGeN2/In0.16Ga0.84N type-II quantum well-based green emitting LED[J]. Phys Status Solidi-R, 2018, 12(8): 1800173. DOI: 10.1002/pssr.201800173.
[9] [9] KARIM M R, ZHAO H P. Design of InGaN-ZnSnN2 quantum wells for high-efficiency amber light emitting diodes[J]. J Appl Phys, 2018, 124: 034303. DOI: 10.1063/1.5036949.
[10] [10] GORAI A, BISWAS D. A tunable LED based on InGaN-ZnSnN2/GaN QW in the infrared range, for optical communications[J]. Optik, 2017, 158(1): 553-557. DOI: 10.1016/j.ijleo.2017.12.155.
[11] [11] GORAI A. Near-infrared light emitting diodes based on the type-ii InGaN-ZnSnN2/GaN quantum wells[J]. Opt Mater, 2018, 85: 337-340. DOI: 10.1016/j.optmat.2018.09.005.
[12] [12] LAIDOUCI A, AISSAT A, VILCOT J P. Numerical study of solar cells based on ZnSnN2 structure[J]. Sol Energy, 2020, 211: 237-243.DOI: 10.1016/j.solener.2020.09.025.
[13] [13] WANG T S, NI C Y, JANOTTI A. Band alignment and p-type doping of ZnSnN2[J]. Phys Rev B, 2017, 95: 205205. DOI: 10.1103/PhysRevB.95.205205.
[14] [14] YILDIRIM H. Effects of built-in electric field on donor binding energy in InGaN/ZnSnN2 quantum well structures[J]. Phys Lett A, 2019, 383(12): 1324-1329.DOI: 10.1016/j.physleta.2019.01.046.
[16] [16] CHENG Q Y, SHI L, YAN Z W. Photoelectric Conversion Efficiency of Strained Wurtzite ZnSnN2/InxGa1-xN Cylindrical Quantum Dots[J]. Journal of Inner Mongolia University (Natural Science Edition), 2021, 52(2): 129-135. DOI: 10.13484/j.nmgdxxbzk.20210204.
[17] [17] MORIWAKI O, SOMEYA T, TACHIBANA K, et al. Narrow photoluminescence peaks from localized states in InGaN quantum dot structures[J]. Appl Phys Lett, 2000, 76(17): 2361-2363. DOI: 10.1063/1.126346.
[18] [18] SHI J J, GAN Z Z. Effects op piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots[J]. J Appl Phys, 2003, 94(1): 407-415. DOI: 10.1063/1.1576490.
[19] [19] PAUDEL T R, LAMBRECHT W R L. First-principles study of phonons and related ground-state properties and spectra in Zn-IV-N2 compounds[J]. Phys Rev B, 2008, 78(11): 115204. DOI: 10.1103/PhysRevB.78.115204.
[20] [20] PAUDEL T R, LAMBRECHT W R L. First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds[J]. Phys Rev B, 2009, 79: 245205. DOI: 10.1103/PhysRevB.79.245205.
[21] [21] ZHENG D M, WANG Z C. Influence of Mg Composition on Optical Properties of Exciton Confinement in Strained Wurtzite ZnO/MgxZn1-xO Cylindrical Quantum Dots[J]. Commun Theor Phys, 2012, 58(6): 915-922. DOI: 10.1088/0253-6102/58/6/20.
[22] [22] QUE W M.Excitons in quantum dots with parabolic confinement[J]. Phys Rev B, 1992, 45(19): 11036-11041. DOI: 10.1103/PhysRevB.45.11036.
[23] [23] BRYANT G W. Excitons in quantum boxes: correlation effects and quantum confinement[J]. Phys Rev B, 1988, 37(15): 8763-8772. DOI: 10.1103/PhysRevB.37.8763.
[24] [24] MINIMALA N S, JOHN PETER A, CHANG YOO C K. Magnetic field induced non-linear optical properties in a strained wurtzite GaN/AlxGa1-xN quantum dot: Effect of internal fields[J]. Superlattice Microst, 2013, 60: 148-159. DOI: 10.1016/j.spmi.2013.04.017.
[25] [25] FONOBEROV V A, BALANDIN A A. Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1-xN quantum dots[J]. J Appl Phys, 2003, 94(11): 7178-7186. DOI: 10.1063/1.1623330.
[26] [26] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for iii-v compound semiconductors and their alloys [J]. J Appl Phys, 2001, 89(11): 5815-5875. DOI: 10.1063/1.1368156.
[27] [27] SUZUKI M, UENOYAMA T, YANASE A. First-principles calculations of effective-mass parameters of AlN and GaN[J]. Phys Rev B, 1995, 52(11): 8132-8139. DOI: 10.1103/PhysRevB.52.8132.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Exciton States and Interband Transitions of Wurtzite ZnSnN2/InxGa1-xN Cylindrical Quantum Dot[J]. Journal of Quantum Optics, 2021, 27(4): 342
Category:
Received: Sep. 17, 2021
Accepted: Aug. 7, 2025
Published Online: Aug. 7, 2025
The Author Email: (smdmzheng@sina.com)