Chinese Journal of Lasers, Volume. 51, Issue 1, 0119001(2024)
Thin Film Lithium Niobate Electro-Optic Devices and Ultralarge-Scale Photonic Integration(Invited)
[1] Pockels F. Ueber den einfluss des elektrostatischen feldes auf das optische verhalten piëzoelektrischer krystalle[J]. Abhandlungen der Gesellschaft der Wissenschaften in Göttingen, 39, 1-204(1894).
[2] Ballman A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 48, 112-113(1965).
[3] Feng D, Ming N B, Hong J F et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 37, 607-609(1980).
[4] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997).
[5] He J L, Liao J, Liu H et al. Simultaneous CW red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3[J]. Applied Physics Letters, 83, 228-230(2003).
[6] Liao J, He J L, Liu H et al. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3[J]. Applied Physics Letters, 82, 3159-3161(2003).
[7] Li H X, Fan Y X, Xu P et al. 530-mW quasi-white-light generation using all-solid-state laser technique[J]. Journal of Applied Physics, 96, 7756-7758(2004).
[8] Zhu S N, He J L, Zhu Y Y et al. Design of optical superlattice to realize third-harmonic generation and multi-wavelength laser output and its application in the all-solid state laser[P].
[9] Hu X P, Zhao G, Yan Z et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd∶YAG laser with a cascaded LiTaO3 superlattice[J]. Optics Letters, 33, 408-410(2008).
[10] Zhong G, Jin J Y, Wu Z Q. Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO (A)[J]. Journal of the Optical Society of America, 70, 631-635(1980).
[11] Kong Y F, Liu S G, Xu J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 5, 1954-1971(2012).
[12] Zhang G Q, Song D H, Liu Z B et al. Recent progresses on weak-light nonlinear optics[M]. Chen X F, Zhang G Q, Zeng H P, et al. Advances in nonlinear optics, 1-104(2015).
[13] Liu S M, Guo R, Xu J J[M]. Photorefractive nonlinear optics and its application(2004).
[14] Zhang G Q, Bo F, Dong R et al. Phase-coupling-induced ultraslow light propagation in solids at room temperature[J]. Physical Review Letters, 93, 133903(2004).
[15] Chen Z G, Martin H, Eugenieva E D et al. Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains[J]. Physical Review Letters, 92, 143902(2004).
[16] Qiao H J, Xu J J, Zhang G Q et al. Ultraviolet photorefractivity features in doped lithium niobate crystals[J]. Physical Review B, 70, 094101(2004).
[17] Kong Y F, Liu S G, Zhao Y J et al. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 91, 081908(2007).
[18] Wang S L, Shan Y D, Zheng D H et al. The real-time dynamic holographic display of LN∶Bi, Mg crystals and defect-related electron mobility[J]. Opto-Electronic Advances, 5, 210135(2022).
[19] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).
[20] Kaminow I P, Turner E H. Electrooptic light modulators[J]. Proceedings of the IEEE, 54, 1374-1390(1966).
[21] Kaminow I P, Carruthers J R, Turner E H et al. Thin-film LiNbO3 electro-optic light modulator[J]. Applied Physics Letters, 22, 540-542(1973).
[22] Schmidt R V, Kaminow I P. Metal-diffused optical waveguides in LiNbO3[J]. Applied Physics Letters, 25, 458-460(1974).
[23] Carruthers J R, Kaminow I P, Stulz L W. Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate[J]. Applied Optics, 13, 2333-2342(1974).
[24] Levy M, Osgood R M, Jr, Liu R et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 73, 2293-2295(1998).
[25] Barry I E, Ross G W, Smith P G R et al. Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion[J]. Applied Physics Letters, 74, 1487-1488(1999).
[26] Geiss R, Saravi S, Sergeyev A et al. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation[J]. Optics Letters, 40, 2715-2718(2015).
[27] Wang T J, He J Y, Lee C A et al. High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping[J]. Optics Express, 20, 28119-28124(2012).
[28] Lacour F, Courjal N, Bernal M P et al. Nanostructuring lithium niobate substrates by focused ion beam milling[J]. Optical Materials, 27, 1421-1425(2005).
[29] Sohler W G, Hu H, Ricken R et al. Integrated optical devices in lithium niobate[J]. Optics and Photonics News, 19, 24-31(2008).
[30] Guarino A, Poberaj G, Rezzonico D et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 1, 407-410(2007).
[31] Sulser F, Poberaj G, Koechlin M et al. Photonic crystal structures in ion-sliced lithium niobate thin films[J]. Optics Express, 17, 20291-20300(2009).
[32] Wang C, Burek M J, Lin Z et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express, 22, 30924-30933(2014).
[33] Wang J, Bo F, Wan S et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 23, 23072-23078(2015).
[34] Gao B F, Ren M X, Wu W et al. Lithium niobate metasurfaces[J]. Laser & Photonics Reviews, 13, 1800312(2019).
[35] Courjal N, Guichardaz B, Ulliac G et al. High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing[J]. Journal of Physics D: Applied Physics, 44, 305101(2011).
[36] Sun J, Gan Y, Xu C Q. Efficient green-light generation by proton-exchanged periodically poled MgO∶LiNbO3 ridge waveguide[J]. Optics Letters, 36, 549-551(2011).
[37] Takeuchi Y, Sakaida Y, Sawada K et al. Development of a 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanisms[J]. CIRP Annals, 49, 295-298(2000).
[38] Takigawa R, Kamimura K, Asami K et al. Fabrication of a bonded LNOI waveguide structure on Si substrate using ultra-precision cutting[J]. Japanese Journal of Applied Physics, 59, SBBD03(2020).
[39] Volk M F, Suntsov S, Rüter C E et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing[J]. Optics Express, 24, 1386-1391(2016).
[40] Ding T T, Zheng Y L, Chen X F. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide[J]. Journal of Lightwave Technology, 37, 1296-1300(2019).
[41] Cheng Y. Ultra-low loss lithium niobate photonics[J]. Proceedings of SPIE, 11266, 112660A(2020).
[42] Wolf R, Breunig I, Zappe H et al. Cascaded second-order optical nonlinearities in on-chip micro rings[J]. Optics Express, 25, 29927-29933(2017).
[43] Wu R B, Zhang J H, Yao N et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 43, 4116-4119(2018).
[44] Chen F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams[J]. Journal of Applied Physics, 106, 081101(2009).
[45] Lin J T, Bo F, Cheng Y et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 8, 1910-1935(2020).
[46] Jia Y C, Wang L, Chen F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 8, 011307(2021).
[47] Ilchenko V S, Savchenkov A A, Matsko A B et al. Nonlinear optics and crystalline whispering gallery mode cavities[J]. Physical Review Letters, 92, 043903(2004).
[48] Hendry I, Trainor L S, Xu Y Q et al. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator[J]. Optics Letters, 45, 1204-1207(2020).
[49] Rabiei P, Steier W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 86, 161115(2005).
[50] Lin J T, Xu Y X, Fang Z W et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 5, 8072(2015).
[51] Lin J T, Xu Y X, Fang Z W et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[J]. Science China Physics, 58, 114209(2015).
[52] Lin J T, Yao N, Hao Z Z et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 122, 173903(2019).
[53] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[54] Sacher W D, Huang Y, Lo G Q et al. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices[J]. Journal of Lightwave Technology, 33, 901-910(2015).
[55] Zhou J X, Gao R H, Lin J T et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 37, 084201(2020).
[56] Wang M, Wu R B, Lin J T et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 1, e9(2019).
[57] Zhu S N. Meter-level optical delay line on a low-loss lithium niobate nanophotonics chip[J]. Chinese Physics Letters, 37, 080102(2020).
[58] Zhang J H, Fang Z W, Lin J T et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 9, 1218(2019).
[59] Wu R B, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 8, 910(2018).
[60] Zhang M, Wang C, Cheng R et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 4, 1536-1537(2017).
[61] Gao R H, Zhang H S, Bo F et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108[J]. New Journal of Physics, 23, 123027(2021).
[62] Savchenkov A A, Ilchenko V S, Matsko A B et al. Kilohertz optical resonances in dielectric crystal cavities[J]. Physical Review A, 70, 051804(2004).
[63] Fürst J U, Strekalov D V, Elser D et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator[J]. Physical Review Letters, 104, 153901(2010).
[64] Chen J M, Liu Z X, Song L B et al. Ultra-high-speed high-resolution laser lithography for lithium niobate integrated photonics[J]. Proceedings of SPIE, 12411, 1241109(2023).
[65] Kong Y F, Bo F, Wang W W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, e1806452(2020).
[66] Honardoost A, Abdelsalam K, Fathpour S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 14, 2000088(2020).
[67] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 9, 1287-1320(2020).
[68] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications[J]. Laser & Photonics Reviews, 14, 1900407(2020).
[69] Zhu D, Shao L, Yu M et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 13, 242-352(2021).
[70] Boes A, Chang L, Langrock C et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 379, eabj4396(2023).
[71] Wang M, Qiao L L, Fang Z W et al. Active lithium niobate photonic integration based on ultrafast laser lithography[J]. Acta Optica Sinica, 43, 1623014(2023).
[72] Ke W, Lin Y M, He M B et al. Digitally tunable optical delay line based on thin-film lithium niobate featuring high switching speed and low optical loss[J]. Photonics Research, 10, 2575-2583(2022).
[73] Song Q Q. Scalable and reconfigurable continuously tunable lithium niobate thin film delay line using graphene electrodes[J]. IEEE Photonics Journal, 14, 6648708(2022).
[74] Song L B, Chen J M, Wu R B et al. Electro-optically tunable optical delay line with a continuous tuning range of ∼220 fs in thin-film lithium niobate[J]. Optics Letters, 48, 2261-2264(2023).
[75] Zhou J X, Liang Y T, Liu Z X et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator[J]. Laser & Photonics Reviews, 15, 2100030(2021).
[76] Luo Q, Yang C, Hao Z Z et al. On-chip erbium-doped lithium niobate waveguide amplifiers[J]. Chinese Optics Letters, 19, 060008(2021).
[77] Chen Z X, Xu Q, Zhang K et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers[J]. Optics Letters, 46, 1161-1164(2021).
[78] Cai M L, Wu K, Xiang J M et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8200608(2022).
[79] Liang Y T, Zhou J X, Liu Z X et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching[J]. Nanophotonics, 11, 1033-1040(2022).
[80] Zhang Z H, Fang Z W, Zhou J X et al. On-chip integrated Yb3+-doped waveguide amplifiers on thin film lithium niobate[J]. Micromachines, 13, 865(2022).
[81] Zhou Y, Zhu Y R, Fang Z W et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process[J]. Laser & Photonics Reviews, 17, 2200686(2023).
[82] Zhang Z H, Li S M, Gao R H et al. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain[J]. Optics Letters, 48, 4344-4347(2023).
[83] Zhang Y Q, Luo Q, Wang S L et al. On-chip ytterbium-doped lithium niobate waveguide amplifiers with high net internal gain[J]. Optics Letters, 48, 1810-1813(2023).
[84] He M B, Xu M Y, Ren Y X et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 13, 359-364(2019).
[85] Xu M Y, He M B, Zhang H G et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 11, 3911(2020).
[86] Xu M Y, Zhu Y T, Pittalà F et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica, 9, 61-62(2022).
[87] Wang Z, Chen G X, Ruan Z L et al. Silicon-lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode[J]. ACS Photonics, 9, 2668-2675(2022).
[88] Wang C, Zhang M, Yu M J et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 10, 978(2019).
[89] Zhang K, Sun W Z, Chen Y K et al. A power-efficient integrated lithium niobate electro-optic comb generator[J]. Communications Physics, 6, 17(2023).
[90] Tanzilli S, de Riedmatten H, Tittel W et al. Highly efficient photon-pair source using periodically poled lithium niobate waveguide[J]. Electronics Letters, 37, 26-28(2001).
[91] Sun C W, Wu S H, Duan J C et al. Compact polarization-entangled photon-pair source based on a dual-periodically-poled Ti∶LiNbO3 waveguide[J]. Optics Letters, 44, 5598-5601(2019).
[92] Xue G T, Niu Y F, Liu X Y et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip[J]. Physical Review Applied, 15, 064059(2021).
[93] Deng H, Bogaerts W. Pure phase modulation based on a silicon plasma dispersion modulator[J]. Optics Express, 27, 27191-27201(2019).
[94] Witzens J. High-speed silicon photonics modulators[J]. Proceedings of the IEEE, 106, 2158-2182(2018).
[95] Li K, Liu S H, Thomson D J et al. Electronic-photonic convergence for silicon photonics transmitters beyond 100 Gbps on-off keying[J]. Optica, 7, 1514-1516(2020).
[96] Cheng Z, Zhu X L, Galili M et al. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth[J]. Nanophotonics, 9, 2377-2385(2020).
[97] Kharel P, Reimer C, Luke K et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 8, 357-363(2021).
[98] Yu M J, Barton III D, Cheng R et al. Integrated femtosecond pulse generator on thin-film lithium niobate[J]. Nature, 612, 252-258(2022).
[99] Shams-Ansari A, Yu M J, Chen Z J et al. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy[J]. Communications Physics, 5, 88(2022).
[100] Hu Y W, Yu M J, Buscaino B et al. High-efficiency and broadband on-chip electro-optic frequency comb generators[J]. Nature Photonics, 16, 679-685(2022).
[101] Xu M Y, He M B, Zhu Y T et al. Flat optical frequency comb generator based on integrated lithium niobate modulators[J]. Journal of Lightwave Technology, 40, 339-345(2022).
[102] Jin H, Liu F M, Xu P et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 113, 103601(2014).
[103] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).
[104] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 37, 191-203(1985).
[105] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi (a), 201, 175(2004).
[106] Carrascosa M, García-Cabañes A, Jubera M et al. LiNbO3: a photovoltaic substrate for massive parallel manipulation and patterning of nano-objects[J]. Applied Physics Reviews, 2, 040605(2015).
[107] Bazzan M, Sada C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2, 040603(2015).
[108] Chen W J, Chen Y T, Liu W. Singularities and poincaré indices of electromagnetic multipoles[J]. Physical Review Letters, 122, 153907(2019).
[109] Fang B, Li H M, Zhu S N et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Research, 8, 1296-1300(2020).
[110] Fedotova A, Younesi M, Sautter J et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate[J]. Nano Letters, 20, 8608-8614(2020).
[111] Ma J J, Xie F, Chen W J et al. Nonlinear lithium niobate metasurfaces for second harmonic generation[J]. Laser & Photonics Reviews, 15, 2000521(2021).
[112] Gao B F, Ren M X, Wu W et al. Electro-optic lithium niobate metasurfaces[J]. Science China Physics, 64, 240362(2021).
[113] Qu L, Bai L, Jin C Y et al. Giant second harmonic generation from membrane metasurfaces[J]. Nano Letters, 22, 9652-9657(2022).
[114] Yuan S, Wu Y K, Dang Z Z et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity[J]. Physical Review Letters, 127, 153901(2021).
[115] Huang Z J, Luo K W, Feng Z W et al. Resonant enhancement of second harmonic generation in etchless thin film lithium niobate heteronanostructure[J]. Science China Physics, 65, 104211(2022).
[116] Holzgrafe J, Sinclair N, Zhu D et al. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction[J]. Optica, 7, 1714-1720(2020).
[117] Brinkmann R, Baumann I, Dinand M et al. Erbium-doped single- and double-pass Ti∶LiNbO3 waveguide amplifiers[J]. IEEE Journal of Quantum Electronics, 30, 2356-2360(1994).
[118] Baumann I, Brinkmann R, Dinand M et al. Ti∶Er∶LiNbO3 waveguide laser of optimized efficiency[J]. IEEE Journal of Quantum Electronics, 32, 1695-1706(1996).
[119] Luo Q, Hao Z Z, Yang C et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, 64, 234263(2021).
[120] Wang Z, Fang Z W, Liu Z X et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 46, 380-383(2021).
[121] Gao R H, Guan J L, Yao N et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator[J]. Optics Letters, 46, 3131-3134(2021).
[122] Liu X M, Yan X S, Liu Y A et al. Tunable single-mode laser on thin film lithium niobate[J]. Optics Letters, 46, 5505-5508(2021).
[123] Li T Y, Wu K, Cai M L et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator[J]. APL Photonics, 6, 101301(2021).
[124] Zhu Y R, Zhou Y, Wang Z et al. Electro-optically tunable microdisk laser on Er3+-doped lithium niobate thin film[J]. Chinese Optics Letters, 20, 011303(2022).
[125] Yu S P, Fang Z W, Wang Z et al. On-chip single-mode thin-film lithium niobate Fabry–Perot resonator laser based on Sagnac loop reflectors[J]. Optics Letters, 48, 2660-2663(2023).
[126] Zhang R, Yang C, Hao Z Z et al. Integrated lithium niobate single-mode lasers by the Vernier effect[J]. Science China Physics, 64, 294216(2021).
[127] Xiao Z Y, Wu K, Cai M L et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator[J]. Optics Letters, 46, 4128-4131(2021).
[128] Liang Y T, Zhou J X, Wu R B et al. Monolithic single-frequency microring laser on an erbium-doped thin film lithium niobate fabricated by a photolithography assisted chemo-mechanical etching[J]. Optics Continuum, 1, 1193-1201(2022).
[129] Zhou J X, Huang T, Fang Z W et al. Laser diode-pumped compact hybrid lithium niobate microring laser[J]. Optics Letters, 47, 5599-5601(2022).
[131] Miller S E. Integrated optics: an introduction[J]. Bell System Technical Journal, 48, 2059-2069(1969).
[132] Smit M, van der Tol J, Hill M. Moore's law in photonics[J]. Laser & Photonics Reviews, 6, 1-13(2012).
[133] Zheng Y, Zhong H Z, Zhang H S et al. Electro-optically programmable photonic circuits enabled by wafer-scale integration on thin-film lithium niobate[J]. Physical Review Research, 5, 033206(2023).
[134] Cheng Q X, Bahadori M, Glick M et al. Recent advances in optical technologies for data centers: a review[J]. Optica, 5, 1354-1370(2018).
[135] Smit M K, van Dam C. PHASAR-based WDM-devices: principles, design and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 236-250(1996).
[136] Tsuchizawa T, Yamada K, Watanabe T et al. Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 516-525(2011).
[137] Cheben P, Schmid J H, Delâge A et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides[J]. Optics Express, 15, 2299-2306(2007).
[138] Rank E A, Sentosa R, Harper D J et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings[J]. Light: Science & Applications, 10, 6(2021).
[140] Prost M, Liu G Y, Ben Yoo S J. A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs[C](2018).
[141] Han Y, Zhang X, Huang F J et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser[J]. Optics Letters, 46, 5413-5416(2021).
[142] Wu R B, Gao L, Liang Y T et al. High-production-rate fabrication of low-loss lithium niobate electro-optic modulators using photolithography assisted chemo-mechanical etching (PLACE)[J]. Micromachines, 13, 378(2022).
Get Citation
Copy Citation Text
Ya Cheng. Thin Film Lithium Niobate Electro-Optic Devices and Ultralarge-Scale Photonic Integration(Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0119001
Category:
Received: Oct. 7, 2023
Accepted: Nov. 6, 2023
Published Online: Jan. 19, 2024
The Author Email: Cheng Ya (ya.cheng@siom.ac.cn)
CSTR:32183.14.CJL231256