Journal of Quantum Optics, Volume. 28, Issue 2, 107(2022)

Research on the Influence of Different Noise Channels on Multi-coin Quantum Game

ZHANG Shu-ning*, MA Si-jia, WANG Yi-han, and ZHANG Xin-li
Author Affiliations
  • [in Chinese]
  • show less
    References(16)

    [1] [1] NASKAR K. Quantum version of Prisoners’ Dilemma under interacting environment[J]. Quantum Information Processing, 2021, 20(11): 365. DOI: 10.1007/S11128-021-03310-X.

    [2] [2] HUANG Z, ALONSO-SANZ R, SITU H. Quantum samaritan’s dilemma under decoherence[J]. International Journal of Theoretical Physics, 2017, 56(3): 863-873. DOI: 10.1007/s10773-016-3229-y.

    [3] [3] CHEN L K, ANG H, KIANG D, et al. Quantum prisoner dilemma under decoherence[J]. Physics Letters A, 2003, 316(5): 317-323. DOI: 10.1016/S0375-9601(03)01175-7.

    [4] [4] FLITNEY A P, ABBOTT D. Quantum games with decoherence[J]. Journal of Physics A Mathematical and General, 2004, 38(2): 449. DOI: 10.1088/0305-4470/38/2/011.

    [5] [5] NAWAZ A, TOOR A H. Quantum games with correlated noise[J]. Journal of Physics A General Physics, 2006, 39(29): 9321-9328. DOI: 10.1088/0305-4470/39/29/022.

    [6] [6] KHAN S, RAMZAN M, KHAN M K. Quantum stackelberg duopoly in the presence of correlated noise[J]. Quantum Physics, 2010, 43(43): 375301-375314. DOI: 10.1088/1751-8113/43/37/375301.

    [7] [7] QIN M, YAO P. Nonlocal Games with Noisy Maximally Entangled States are Decidable[J]. SIAM Journal on Computing, 2021, 50(6): 1800-1891. DOI: 10.1137/20M134592X.

    [8] [8] DALL’ARNO M, BRANDSEN S, BUSCEMI F. Explicit Construction of Optimal Witnesses for Input-Output Correlations Attainable by Quantum Channels[J]. Open Systems & Information Dynamics, 2020, 27(04): 2050017. DOI: 10.1142/S1230161220500171.

    [9] [9] MEYER D A. Quantum strategies[J]. Physical Review Letters, 1999, 82(5): 1052-1055. DOI: 10.1103/physrevlett.82.1052.

    [10] [10] CHAPPELL J M, IQBAL A, LOHE M A, et al. An Analysis of the Quantum penny flip game using Geometric Algebra[J]. Journal of the Physical Society of Japan, 2009, 78(5): 54801-54801. DOI: 10.1143/jpsj.78.054801.

    [11] [11] HIROAKI M. Non-Abelian strategies in quantum penny flip game[J]. Progress of Theoretical and Experimental Physics, 2018, (1): 1. DOI: 10.1093/ptep/ptx182.

    [12] [12] YU T, BEN-AV R. Evolutionarily stable sets in quantum penny flip games[J]. Quantum Information Processing, 2013, 12(6): 2143-2165. DOI: 10.1007/s11128-012-0515-3.

    [13] [13] MISZCZAK J A, GAWRON P. Qubit flip game on a Heisenberg spin chain[J]. Quantum Information Processing, 2012, 11(6): 1571-1583. DOI: 10.1007/s11128-011-0322-2.

    [14] [14] LAI J W, CHEONG K H. Parrondo effect in quantum coin-toss simulations[J]. Physical review E, 2020, 101(5-1): 052212. DOI: 10.1103/PhysRevE.101.052212.

    [17] [17] BALAKRISHNAN S, SANKARANARAYANAN R. Classical rules and quantum strategies in penny flip game[J]. Quantum Information Processing, 2013, 12(2): 1261-1268. DOI: 10.1007/s11128-012-0464-x.

    [18] [18] SUNDARESH S, DAVE B, BALAKRISHNAN S. Significance of Entangling Operators in Quantum Two Penny Flip Game[J]. Brazilian Journal of Physics, 2019, 49(6): 859-863. DOI: 10.1007/s13538-019-00698-x.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Shu-ning, MA Si-jia, WANG Yi-han, ZHANG Xin-li. Research on the Influence of Different Noise Channels on Multi-coin Quantum Game[J]. Journal of Quantum Optics, 2022, 28(2): 107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 13, 2021

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email: ZHANG Shu-ning (774846007@qq.com)

    DOI:10.3788/jqo20222802.0301

    Topics