Laser Technology, Volume. 46, Issue 6, 779(2022)

The asymmentry of the electron trajectory and spatial radiation in tightly focused laser

SHEN Yuting, ZHANG Jiachen, CHANG Yifan, XU Ruijie, and TIAN Youwei*
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [1] [1] MAINE P, STRICKLAND D, BADO P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403.

    [2] [2] PERRY M,MOUROU G. Terawatt to petawatt subpicosecond lasers[J]. Science, 1994, 264(5161): 917-924.

    [3] [3] EIDAM T, HANF S, SEISE E, et al. Femtosecond fiber cpa system emitting 830W average output power[J]. Optics Letters,2010,35(2): 94-96.

    [4] [4] MOUROU G, BARTY C, PERRY M. Ultrahigh-intensity laser: Physics of the extreme on a tabletop[J].Physics Today, 1998, 51(1): 22-28.

    [5] [5] CORKUM P, KRAUSZ F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387.

    [6] [6] KRAUSZ F, IVANOV M. Attosecond physics[J]. Reviews of Mo-dern Physics, 2009, 81(1): 163-205.

    [7] [7] POGORELSKY I, BEN-ZVI I, HIROSE T, et al. Demonstration of 8×1018 photons/second peaked at 1.8 in a relativistic thomson sca-ttering experiment[J]. Physical Review Special Topics- Accelerators and Beams, 2000, 3(9): 090702.

    [8] [8] SAKAI I, AOKI T, DOBASHI K, et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons[J]. Physical Review Special Topics-Accelerators and Beams, 2003, 6(9): 091001.

    [9] [9] YAN W, FRUHLING C, GOLOVIN G, et al. High-order multiphoton thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520.

    [10] [10] SUORTTI P,THOMLINSON W. Medical applications of synchrotron radiation[J]. Physics in Medicine & Biology, 2003, 48(13): R1.

    [11] [11] CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluorescence computed tomography based on a thomson scattering light source: A monte carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745.

    [12] [12] KHRENNIKOV K, WENZ J, BUCK A, et al. Tunable all-optical quasimonochromatic thomson X-ray source in the nonlinear regime[J]. Physical Review Letters, 2015, 114(19): 195003.

    [13] [13] ZHUANG J, YAN Y, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from elec-tron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401.

    [14] [14] MIKHAILOVA Y, PLATONENKO V, RYKOVANOV S. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse[J]. Journal of Experimental and Theore-tical Physics Letters, 2005, 81(11): 571-574.

    [15] [15] PHUOC K, CORDE S, THAURY C, et al. All-optical compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311.

    [16] [16] LEE K, CHUNG S, PARK S, et al. Effects of high-order fields of a tightly focused laser pulse on rela-tivistic nonlinear thomson scattered radiation by a relativistic electron[J]. EPL (Europhysics Letters), 2010, 89(6): 64006.

    [17] [17] BALTUKA A, UDEM T, UIBERACKER M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615.

    [18] [18] WANG H R, XIA F Y, TIAN Y W. Simulation calculation of the influence of pulse width on the peak radiation of laser impact electron[J/OL].(2021-06-08).https://kns.cnki.net/kcms/detail/51.1125.tn.20210608.1356.006.html (in Chinese).

    [19] [19] YAN Y L, ZHOU X, REN Sh L, et al. Influence of electron’s initial position on spatial radiation of high-energy electrons[J/OL]. (2021-06-29).https://kns.cnki.net/kcms/detail/51.1125.tn.20210629.1330.006.html (in Chinese).

    [20] [20] LEE K, CHA Y, SHIN M, et al. Relativistic nonlinear thomson scattering as attosecond X-ray source[J]. Physical Review, 2003, E67(2): 026502.

    [21] [21] ZHENG J, SHENG Z, ZHANG J, et al. Parameters that influenee the nonlinear thomson scattering of single electrons in high-intensity laser fields[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese).

    [22] [22] VAIS O, BOCHKAREV S, BYCHENKOV V. Nonlinear thomson scattering of a relativistically strong tightly focused ultrashort laser pulse[J]. Plasma Physics Reports, 2016, 42(9): 818-833.

    [23] [23] LI K, LI L, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817.

    [24] [24] WANG Y, WANG C, LI K, et al. Spatial radiation features of thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2020, 18(1): 15303.

    [25] [25] BAUER D, MULSER P, STEEB W H. Relativistic ponderomotive force, uphill acceleration, and transition to chaos[J]. Physical Review Letters, 1995, 75(25): 4622.

    [26] [26] CHEN Z, QIN H, CHEN X, et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding with electrons[J]. Laser Physics, 2021, 31(7): 075401.

    [27] [27] SHENG Z M. Advances in high field laser physics[M].Shanghai: Shanghai Jiao Tong University Press, 2014: 4-18(in Chinese).

    Tools

    Get Citation

    Copy Citation Text

    SHEN Yuting, ZHANG Jiachen, CHANG Yifan, XU Ruijie, TIAN Youwei. The asymmentry of the electron trajectory and spatial radiation in tightly focused laser[J]. Laser Technology, 2022, 46(6): 779

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 24, 2021

    Accepted: --

    Published Online: Feb. 4, 2023

    The Author Email: TIAN Youwei (tianyw@njupt.edu.cn)

    DOI:10-7510/jgjs-issn-1001-3806-2022-06-011

    Topics