Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010023(2023)
Esophageal Squamous Cell Carcinoma Recognition Based on Lightweight Residual Networks with an Attention Mechanism
[1] Sung H, Ferlay J, Siegel R L et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 71, 209-249(2021).
[2] Jia J P, Wang F, Wei C B et al. The prevalence of dementia in urban and rural areas of China[J]. Alzheimer’s & Dementia, 10, 1-9(2014).
[5] Goda K, Tajiri H, Ikegami M et al. Magnifying endoscopy with narrow band imaging for predicting the invasion depth of superficial esophageal squamous cell carcinoma[J]. Diseases of the Esophagus, 22, 453-460(2009).
[6] Liedlgruber M, Uhl A. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review[J]. IEEE Reviews in Biomedical Engineering, 4, 73-88(2011).
[7] Liu Y M, Xiao Z Y. Automatic segmentation algorithm of liver tumor based on feature fusion[J]. Laser & Optoelectronics Progress, 58, 1417001(2021).
[8] Cao B, Yang F, Ma J G. Application of deep learning methods in diagnosis of lung nodules[J]. Laser & Optoelectronics Progress, 58, 1600005(2021).
[9] Zhao X, Wang X, Wang H K. End-to-end segmentation of brain white matter hyperintensities combining attention and Inception modules[J]. Acta Optica Sinica, 41, 0910002(2021).
[10] Min J K, Kwak M S, Cha J M. Overview of deep learning in gastrointestinal endoscopy[J]. Gut and Liver, 13, 388-393(2019).
[11] Rajkomar A, Dean J, Kohane I. Machine learning in medicine[J]. The New England Journal of Medicine, 380, 1347-1358(2019).
[12] Mori Y, Kudo S E, Mohmed H E N et al. Artificial intelligence and upper gastrointestinal endoscopy: current status and future perspective[J]. Digestive Endoscopy, 31, 378-388(2019).
[13] Zhang C Z, Ma L, Uedo N et al. Tu1217 the use of convolutional neural artificial intelligence network to aid the diagnosis and classification of early esophageal neoplasia. A feasibility study[J]. Gastrointestinal Endoscopy, 85, AB587-AB588(2017).
[14] Xue D X, Zhang R, Feng H et al. CNN-SVM for microvascular morphological type recognition with data augmentation[J]. Journal of Medical and Biological Engineering, 36, 755-764(2016).
[15] Zhao Y Y, Xue D X, Wang Y L et al. Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy[J]. Endoscopy, 51, 333-341(2019).
[16] Ohmori M, Ishihara R, Aoyama K et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network[J]. Gastrointestinal Endoscopy, 91, 301-309(2020).
[17] Nakagawa K, Ishihara R, Aoyama K et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists[J]. Gastrointestinal Endoscopy, 90, 407-414(2019).
[18] Everson M, Herrera L G P, Li W et al. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: a proof-of-concept study[J]. United European Gastroenterology Journal, 7, 297-306(2019).
[19] Guo L J, Xiao X, Wu C C et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)[J]. Gastrointestinal Endoscopy, 91, 41-51(2020).
[21] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[22] Han K, Wang Y H, Tian Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).
[23] Liu J J, Hou Q B, Cheng M M et al. Improving convolutional networks with self-calibrated convolutions[C], 10093-10102(2020).
[24] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).
[25] Cui Y, Jia M L, Lin T Y et al. Class-balanced loss based on effective number of samples[C], 9260-9269(2019).
[26] He K M, Zhang X Y, Ren S Q et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C], 1026-1034(2015).
[27] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).
[28] Chollet F. Xception: deep learning with depthwise separable convolutions[C], 1800-1807(2017).
[29] Xie S N, Girshick R, Dollár P et al. Aggregated residual transformations for deep neural networks[C], 5987-5995(2017).
[30] Gao S H, Cheng M M, Zhao K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[31] Hu J, Shen L, Sun G et al. Squeeze-and-excitation networks[C], 7132-7141(2018).
[32] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
[33] Selvaraju R R, Cogswell M, Das A et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C], 618-626(2017).
Get Citation
Copy Citation Text
Jinming Wang, Peng Li, Yan Liang, Wei Sun, Jie Song, Yadong Feng, Lingxiao Zhao. Esophageal Squamous Cell Carcinoma Recognition Based on Lightweight Residual Networks with an Attention Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010023
Category: Image Processing
Received: Mar. 2, 2022
Accepted: May. 5, 2022
Published Online: May. 17, 2023
The Author Email: Lingxiao Zhao (hitic@sibet.ac.cn)